共查询到15条相似文献,搜索用时 78 毫秒
1.
采用等离子体处理方法对PBO(聚对苯撑苯并二 口 恶 唑)纤维表面进行改性。用XPS和AFM测试分析等离子处理时间对PBO纤维表面组成和表面形貌的影响规律;首次采用浸润性测试和IR测试分析等离子体处理前后纤维浸润性和表面官能团的变化。用Microbond测试方法表征了纤维与树脂基体的界面剪切强度,并用SEM观察微复合材料破坏形貌。结果表明:等离子体处理后纤维浸润性得到改善,纤维表面苯环上引入了很多羟基。等离子体处理最佳条件下(170 W,10 min),纤维表面粗糙度最大,纤维表面O元素含量最大, O/C比率提高了50.5 %, IFSS值提高了64.7 %。 相似文献
2.
用扫描电子显微镜观察Technora纤维表面物理形貌并测量单丝纤维的拉伸强度以分析等离子体处理对纤维本体性能的影响,再用层间剪切强度和吸水率分别表征复合材料在室温干态和高温湿态下的界面性能,研究了等离子体处理对Technora纤维复合材料界面性能的影响。结果表明,用等离子体处理后纤维表面的物理形貌发生了显著变化,复合材料的层间剪切强度由未处理时的15.74 MPa提高到24.93 MPa,提高的幅度高达58.4%;同时,复合材料的吸水率下降而本体性能基本不受影响。上述结果表明,等离子体对Technora纤维的表面改性能有效地改善其复合材料的界面性能。 相似文献
3.
4.
5.
用常压空气介质阻挡放电等离子体在PBO纤维表面接枝聚氨酯,研究了上浆剂对接枝反应的影响。对接枝改性后的PBO纤维的XPS分析结果表明,等离子体接枝聚氨酯改性使PBO纤维表面的化学组成发生了很大的变化。与DBD单独处理相比,接枝改性后的PBO纤维出现了更多的羧基,其提高值为64%~189%(不含上浆剂时)、102%~184%(含上浆剂时),为其与其它材料之间的化学键合提供了条件。接枝反应不受上浆剂的影响,等离子体接枝反应破坏了表面PBO分子的噁唑环。通过ATR-FTIR发现,带上浆剂的PBO纤维接枝前后噁唑环的特征峰没有变化,因此在近表面尺度的PBO分子没有破坏的依据;而在不含上浆剂的接枝改性PBO纤维上能检测到噁唑环的破坏,表明上浆剂能阻止等离子体对纤维近表面层的破坏。 相似文献
6.
采取不同浓度的磷酸水溶液对芳纶纤维进行表面处理, 并对不同处理条件下芳纶纤维的单丝强度、表面性质及其环氧树脂复合材料的界面性能进行了分析和测试。结果表明: 20 wt %磷酸溶液处理的芳纶纤维, 纤维表面含氧官能团含量最高; 继续提高磷酸溶液的浓度, 含氧官能团含量下降, 纤维表面趋于平整, 单丝强度上升。用20 wt %磷酸溶液处理芳纶纤维, 纤维/ 环氧树脂基复合材料的层间剪切强度达到62 MPa , 界面剪切强度提高18 % , 是一种简单有效的表面处理方法。纤维表面粗糙度和纤维表面含氧官能团的数量是影响芳纶纤维/ 环氧树脂复合材料界面结合性能的关键因素。 相似文献
7.
8.
9.
PBO 作为增强纤维存在与环氧树脂基体界面粘结性能差的问题。通过在聚合过程中添加少量5-磺酸钠2间苯二甲酸部分替代对苯二甲酸与4 , 6-二氨基间苯二酚盐酸盐进行共聚, 合成了大分子链上含有离子基团的SPBO 共聚物, 并制得SPBO 初生纤维。通过接触角测试和XPS 研究了纤维的表面性能, 通过微脱粘实验和SEM评价了纤维与环氧树脂基体的界面粘结性能。结果表明: 与PBO 纤维相比, SPBO 纤维表面浸润性能提高, 表面含氮、氧量均增加, 与环氧树脂的界面剪切强度从8. 2 MPa 提高到10. 1 MPa , 提高了23 %。 相似文献
10.
采用反气相色谱和扫描电子显微镜测试分析了芳纶纤维的表面性能,结果发现K1和K2两种芳纶纤维的表面均比较光滑,总表面能基本相当,但极性表面能和色散表面能分量存在较大差异.层间剪切强度测试表明K2/5405复合材料的界面强度高于K1/5405复合材料,断口形貌分别呈现出不同的基体破坏和界面破坏模式.利用Good-Girifalco相互作用参数分析纤维和树脂的表面能与复合材料界面性能的关系,结果发现复合材料中两相间的相互作用参数增大,匹配性提高,界面性能亦有所提高. 相似文献
11.
12.
13.
14.
采用直流磁控溅射技术在聚醚醚酮(PEEK)表面制备不同厚度的类金刚石(DLC)薄膜,研究了沉积时间对其表/界面结构、组分、疏水、力学和光透过性能的影响。结果表明,在平均沉积速率为5.71 nm/min的条件下,随着沉积时间的延长DLC薄膜的厚度线性增大、碳原子的致密性提高、界面互锁结构增强,而界面结合强度逐渐降低。沉积时间≤15 min时,基体结构的影响使拟合计算出的ID/IG值为0.23~0.25和sp2/sp3比值较小(0.58~0.74);沉积时间>15 min时基体的影响较小,ID/IG值突增大至0.81,sp2/sp3值也比较大(0.96~1.12)。沉积时间的延长使PEEK基体的温度逐渐升高,使膜内的sp2/sp3值逐渐增大。薄膜表面的氧含量先降低然后趋于平缓,部分C=O转化为C-O。随着沉积时间的延长,PEEK/DLC复合薄膜的硬度、弹性模量及防紫外线和阻隔红外线性能都逐渐提高,其表面粗糙度和疏水性的变化趋势是先提高后降低。沉积时间为32 min的薄膜,其表面粗糙度和水接触角达到最大值,分别为495 nm和108.29°。 相似文献