首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of Cr and Fe in solid solution in γ-Al2O3 on its rate of conversion to α-Al2O3 at 1100°C was studied by X-ray diffraction. The δ form of Al2O3 was the principal intermediate phase produced from both pure γ-Al2O3 and that containing Fe3+ in solid solution, although addition of Fe greatly reduced crystallinity. Reflectance spectra and magnetic susceptibilities showed that Cr exists as Cr6+ in γ-Al2O3 and as Cr3+ in α-Al2O3, with θ-Al2O3 as the intermediate phase. The intermediates formed rapidly, and the rates of their conversion to α-Al2O3 were increased by 2 and 5 wt% additions of Fe and decreased by 2 and 4 wt% additions of Cr. An approximately linear relation observed between α-Al2O3 formation and decrease in specific surface area was only slightly affected by the added ions. This relation can be explained by a mechanism in which the sintering of δ- or θ-Al2O3, within the aggregates of their crystallites, is closely coupled with conversion of cubic to hexagonal close packing of O2- ions by synchro-shear.  相似文献   

2.
The sintering of ultrafine γ-Al2O3 powder (particle size ∼10–20 nm) prepared by an inert gas condensation technique was investigated in air at a constant heating rate of 10°C/min. Qualitatively, the kinetics followed those of transition aluminas prepared by other methods. Measurable shrinkage commenced at ∼ 1000°C and showed a region of rapid sintering between ∼1125° and 1175°C followed by a transition to a much reduced sintering rate at higher temperatures. Starting from an initial density of ∼0.60 relative to the theoretical value, the powder compact reached a relative density of 0.82 after sintering to 1350°C. Compared to compacts prepared from the as-received powder, dispersion of the powder in water prior to compaction produced a drastic change in the microstructural evolution and a significant reduction in the densification rate during sintering. The incorporation of a step involving the rapid heating of the loose powder to ∼1300°C prior to compaction (which resulted in the transformation to α-Al2O3) provided a method for significantly increasing the density during sintering.  相似文献   

3.
Isothermal transformation kinetics and coarsening rates were studied in unseeded and alpha-Al2O3-seeded γ-Al2O3 powders heated in dry air and water vapor. Unseeded samples heated in dry air transformed to alpha-Al2O3 with an activation energy of 567 kJ/mol. Seeding with alpha-Al2O3 increased the transformation rates and reduced incubation times by providing low-energy sites for nucleation/growth of the alpha-Al2O3 transformation. The activation energy for the transformation was reduced to 350 kJ/mol in seeded samples heated in dry air. Seeded samples completely transformed to alpha-Al2O3 after 1 h at 1050°C when heated in dry air compared to 1 h at 925°C when heated in saturated water vapor. The combined effects of a lower nucleation barrier due to seeding and the increased diffusion due to water vapor reduced the activation energy for the transformation by 390 kJ/mol and the transformation temperature by ∼225°C compared to the unseeded samples heated in dry air. The accelerated kinetics is believed to be due to increased surface diffusion.  相似文献   

4.
The compaction and heat-treatment behavior of nanosize γ-Al2O3 powder (average diameter = 20 nm) was studied. A diamond anvil high-pressure cell was used to compact the powder at pressures up to 3 GPa, both in air at room temperature and under liquid nitrogen, followed by pressureless heat treatment at 800°C. For all conditions studied, the fabricated compacts were optically transparent. X-ray diffraction confirmed retention of the γ-phase. The compacts were also characterized before and after heat treatment by microhardness measurements and by transmission electron microscopy. For both ambient and cryogenic compaction, sample hardness increased with pressure, and heat treatment resulted in about a 50% increase in hardness independent of the initial green-state value. Samples compacted in LN2 were significantly harder (up to 9.6 GPa) than those compacted in air. TEM examination revealed a random-dense-packed particle structure and interconnected porosity; interstitial void dimensions, however, were always less than the average particle diameter (20 nm). Observed effects on the increase in hardness could not be explained by microstructural changes normally attributed to increased compaction pressure or heat treatment, most notably densification. Alternative explanations are proposed.  相似文献   

5.
Nanostructured Al2O3 powders have been synthesized by combustion of aluminum powder in a microwave oxygen plasma, and characterized by X-ray diffraction and electron microscopy. The main phase is γ-Al2O3, with a small amount of δ-Al2O3. The particles are truncated octahedral in shape, with mean particle sizes of 21–24 nm. The effect of reaction chamber pressure on the phase composition and the particle size was studied. The γ-alumina content increases and the mean particle size decreases with decreasing pressure. No α-Al2O3 appears in the final particles. Electron microscopy studies find that a particle may contain more than one phase.  相似文献   

6.
The electronic structure, the linear optical properties, and the structural properties of α-Al2O3 in the corundum structure are studied by means of first-principles local density calculations. An indirect band gap of 6.29 eV is obtained, which is almost the same as the direct band gap of 6.31 eV at Γ. The calculated density of states are compared with X-ray photoemission and photoabsorption measurements. Real space charge density analysis shows Al,2O3 to be highly ionic with an effective charge formula of Al2+2.75O3−1.83. The calculated dielectric function is in general agreement with the experimental vacuum ultraviolet data. It is shown that the component with c-direction polarization is in better agreement with the experimental data because it is less affected by the exciton formation near the absorption edge. The intrinsic difference between the calculated local density approximation gap and the measured optical gap is pointed out. Various careful test calculations indicate that the remaining discrepancy in the optical spectra may be in the LDA approximation of the electronic structure theory. The total energy calculation for the ground-state structural properties of α-Al2O3 shows excellent agreement with experimental data: the calculated equilibrium volume, c/a ratio, bulk modulus, and internal parameters for Al and O atoms differ from measured values by 0.0, −4.3, −4.0,0.85, and 1.96 percent, respectively. The calculations for the electronic structure and the optical properties are repeated with crystal parameters obtained at 2000°C. The result shows only a slight reduction in the band gap (to 5.76 eV at Γ), with the optical spectra essentially unchanged.  相似文献   

7.
The effect on the γ-Al2O3-to-α-Al2O3 phase transition of adding divalent cations was investigated by differential thermal analysis, X-ray diffractometry, and surface-area measurements. The cations, Cu2+, Mn2+, Co2+, Ni2+, Mg2+, Ca2+, Sr2+, and Ba2+, were added by impregnation, using the appropriate nitrate solution. These additives were classified into three groups, according to their effect: (1) those with an accelerating effect (Cu2+ and Mn2+), (2) those with little or no effect (Co2+, Ni2+, and Mg2+), and (3) those with a retarding effect (Ca2+, Sr2+, and Ba2+). The crystalline phase formed by reaction of the additive with γ-Al2O3 at high temperature was a spinel-type structure in groups (1) and (2) and a magnetoplumbite-type structure in group (3). In groups (2) and (3), a clear relationship was found between the transition temperature and the difference in ionic radius of Al3+ and the additive (Δ r ): The transition temperature increased as Δ r increased. This result indicates that additives with larger ionic radii are more effective in suppressing the diffusion of Al3+ and O2− in γ-Al2O3, suppressing the grain growth of γ-Al2O3, and retarding the transformation into α-Al2O3.  相似文献   

8.
The effect of monovalent cation addition on the γ-Al2O3-to-α-Al2O3 phase transition was investigated by differential thermal analysis, powder X-ray diffractometry, and specific-surface-area measurements. The cations Li+, Na+, Ag+, K+, Rb+, and Cs+ were added by an impregnation method, using the appropriate nitrate solution. β-Al2O3 was the crystalline aluminate phase that formed by reaction between these additives and Al2O3 in the vicinity of the γ-to-α-Al2O3 transition temperature, with the exception of Li+. The transition temperature increased as the ionic radii of the additive increased. The change in specific surface area of these samples after heat treatment showed a trend similar to that of the phase-transition temperature. Thus, Cs+ was concluded to be the most effective of the present monovalent additives for enhancing the thermal stability of γ-Al2O3. Because the order of the phase-transition temperature coincided with that of the formation temperature of β-Al2O3 in these samples, suppression of ionic diffusion in γ-Al2O3 by the amorphous phase containing the added cations must have played an important role in retarding the transition to α-Al2O3. Larger cations suppressed the diffusion reaction more effectively.  相似文献   

9.
High-quality alumina ceramics were fabricated by a hot pressing with MgO and SiO2 as additives using α-Al2O3-seeded nanocrystalline γ-Al2O3 powders as the raw material. Densification behavior, microstructure evolution, and mechanical properties of alumina were investigated from 1250°C to 1450°C. The seeded γ-Al2O3 sintered to 98% relative density at 1300°C. Obvious grain growth was observed at 1400°C and plate-like grains formed at 1450°C. For the 1350°C hot-pressed alumina ceramics, the grain boundary regions were generally clean. Spinel and mullite formed in the triple-grain junction regions. The bending strength and fracture toughness were 565 MPa and 4.5 MPa·m1/2, respectively. For the 1300°C sintered alumina ceramics, the corresponding values were 492 MPa and 4.9 MPa·m1/2.  相似文献   

10.
Seeding boehmite with α-Al2O2, followed by calcination at 600°C, results in an agglomerated alumina powder (<53 μm) that can be sinter forged to full density at 1250°C. Compressive strains as high as ɛx=−0.9, and radial flow (ɛx= 1.0) during sinter forging remove large, interagglomerate pores. The fully dense alumina has a grain size of 0.4 pm and is visually transparent. It is proposed that deformation of dense agglomerates is the primary mecha- nism responsible for large pore elimination and compact densification. The sinter forging of sol-gel-derived alumina powders offers a new technology to prepare highly transparent, optical ceramics at lower temperatures than conventional routes.  相似文献   

11.
Nanocrystalline α-Al2O3 ceramic powders have been prepared from an aqueous solution of aluminum nitrate and sucrose. Soluble Al ion-sucrose solution forms the precursor material once it is completely dehydrated. Heat treatment of the dehydrated precursors at low temperature (600°C) results in the formation of porous single-phase α-Al2O3. The precursor and heat-treated powders have been characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and BET surface area analysis. The phase-pure nanocrystalline α-Al2O3 particles had an average specific surface area of >190 m2/g, with an average pore size between 18 and 25 nm.  相似文献   

12.
This paper focused on the effects of various phases of SiO2 additives on the γ-Al2O3-to-α-Al2O3 phase transition. In the differential thermal analysis, the exothermic peak temperature that corresponded to the theta-to-α phase transition was elevated by adding amorphous SiO2, such as fumed silica and silica gel obtained from the hydrolysis of tetraethyl orthosilicate. In contrast, the peak temperature was reduced by adding crystalline SiO2, such as quartz and cristobalite. Amorphous SiO2 was considered to retard the γ-to-α phase transition by preventing γ-Al2O3 particles from coming into contact and suppressing heterogeneous nucleation on the γ-Al2O3 surface. On the other hand, crystalline SiO2 accelerated the α-Al2O3 transition; thus, this SiO2 may be considered to act as heterogeneous nucleation sites. The structural difference among the various SiO2 additives, especially amorphous and crystalline phases, largely influenced the temperature of γ-Al2O3-to-α-Al2O3 phase transition.  相似文献   

13.
Strong and permeable macro-porous α-Al2O3 membrane supports are made by colloidal filtration of 20 vol% dispersions of α-Al2O3 with an average particle size of 600 nm. Intact compacts with very good surface quality were obtained at an optimum pH of 9.5 and dosage of 0.2 wt% ammonium aurintricarboxylate (Aluminon), based on dry alumina. The colloidal stability of the aluminon-stabilized slurries is confirmed by ξ potential measurements. Slight sintering of dense-packed α-Al2O3 compacts was found to result in >67% packing density and a bimodal pore-size distribution as derived from shrinkage behavior and gas adsorption studies. Non-stationary single gas permeation measurements showed improved gas permeability, compared with α-Al2O3 compacts prepared using powder with a smaller particle size (300 nm). The strength of the disk-shaped alumina compacts within the porosity range of 30%–20% increased from 100 to 300 MPa with a standard deviation of 20 and 50 MPa, respectively.  相似文献   

14.
15.
The structure of Na- and Ca-β"-Al2O3 coatings on α-Al2O3 single-crystal platelets has been studied by optical and electron microscopy and X-ray and electron diffraction. The growth features and potential interface weakening effects of the modified platelets in dispersed-particle reinforced composites are discussed.  相似文献   

16.
17.
Nanostructured MgAl2O4 spinel was synthesized by a direct conversion process from cubic γ-Al2O3. The effect of post-annealing temperature (300°, 500°, and 800°C) on MgAl2O4 phase formation was investigated using transmission electron microscopy, selected area electron diffraction (SAED), electron energy loss spectroscopy (EELS), and energy-dispersive spectroscopy (EDS). Relative diffraction intensities as well as lattice parameter measurements from SAED revealed that MgAl2O4 spinel structure starts forming at temperatures as low as 300°C. EELS and EDS spectrum images also revealed an increase in elemental homogeneity with increasing annealing temperature. The degree of ordering of Mg and Al between octahedral and tetrahedral sites has been determined from relative diffraction intensities. Results show that annealing to 800°C leads to a spinel phase with an order parameter of 0.78.  相似文献   

18.
New results on the     R ± 9° reconstructed α-Al2O3 (0001) surface, which can be obtained after heating at high temperature (1400°C) under vacuum, are presented. The atomic structure has been studied by combining low-energy electron diffractometry and grazing incidence X-ray scattering. The surface structure is found to be perfectly commensurable with the underlying bulk lattice. The surface consists of hexagonal zones of two, nearly perfect, close-packed Al (111) planes separated by a defect of hexagonal periodicity with a parameter of 26.44 Å. This model is consistent with previous surface studies of this reconstruction. The electronic structure has been investigated using valence band photoemission spectroscopy, X-ray absorption spectroscopy at the O K edge, electron energy loss spectroscopy, and X-ray-induced Auger electron spectroscopy. Interpretation of these experimental data in the frame of a self-consistent, tight-binding calculation leads to the conclusion that the     R ± 9° reconstructed surface is more covalent than the (1 × 1) surface. Significant changes in the; Al-O hybridizations are observed; these are likely due to a difference in the interatomic distances along the [0001] axis (relaxations). The increase of covalent character is mainly due to a strong decrease of the Madelung field on the reconstructed surface.  相似文献   

19.
The possibility of eliminating finger or vermicular growth of α-Al2O3 particles obtained by calcination of boehmite was examined. Heterogeneous precipitation of boehmite in a well-dispersed θ-Al2O3 suspension was first prepared, in which the mass ratio of boehmite to θ-crystallite was evaluated to form agglomerates of similar sizes that will form α-Al2O3 crystallites of <100 nm in diameter. θ- to α-phase transformation of alumina experiences a nucleation and growth mechanism, with the critical size of nucleation being ∼25 nm for θ-Al2O3 and the size for accomplishment of transformation followed by finger growth being ∼100 nm. Hence, fabricating agglomerates that would form α-Al2O3 crystallites with sizes <100 nm accompanied with appropriate thermal treatments can be a method for obtaining α-Al2O3 crystallites free of finger growth. It is found that proper preparation of the agglomerate with appropriate size may initiate a simultaneous and lower temperature θ- to α-Al2O3 phase transformation for such powder systems, substantially limiting the mass transfer among the newly formed α-Al2O3 particles. Moreover, α-Al2O3 crystallites free of finger growth can be obtained.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号