首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
对竖直圆管内空气强迫对流换热与自然对流换热进行了实验,从量级上表明了两者的不同,由实验得到了用雷诺数表示的自然对流换热关联式,与现有的大空间自然对流换热公式作了比较。  相似文献   

2.
采用数值方法计算了丁胞结构流道内对流换热过程,并运用场协同理论分析了丁胞结构强化换热的机理,分析了丁胞大小、深度以及Re等对换热过程的影响。结果发现,丁胞的前侧是换热弱化区,而后侧才是强化换热区,但总体表现为强化换热效果,在低Re条件下,Nu较普通流道高1.2~1.5倍,是一种较好的强化换热方式。  相似文献   

3.
采用ANSYS CFX商用软件对带肋矩形直通道内的冷却空气换热特性进行了数值计算,并与文献[4]的实验数据进行了对比,分析了雷诺数Re和肋片角度对努塞尔特数Nu的影响。结果表明:Nu数计算平均值与实验值的变化趋势一致,但计算结果大于实验值;由于肋片的扰流作用,在两个肋片之间的壁面区域产生了两个旋涡,强化了冷却空气与固体壁面的换热;随着Re数的增大,Nu数增大,平均摩擦阻力系数也增大;当肋片角度在45°~60°之间时,冷却通道的强化对流换热效果最好。  相似文献   

4.
矩形窄缝流道内过冷沸腾汽泡行为的可视化   总被引:2,自引:0,他引:2  
采用高速摄像仪,对矩形窄缝流道内过冷沸腾时的汽泡行为进行了可视化实验研究.分析了工况参数对汽泡成核起始点及其脱离直径的影响.结果表明:高过冷沸腾时,窄缝流道内加热面上产生了沿近壁面滑移的汽泡,这种滑移汽泡对窄缝流道内的换热产生了积极的作用,而且汽泡的滑移现象与主流流体的温度有着密切的关系,分析了产生这种滑移现象的原因.  相似文献   

5.
垂直矩形窄缝内的过冷流动沸腾换热性能   总被引:1,自引:0,他引:1  
用高速摄像等方法研究了有压模化介质在单一垂直矩形窄缝流道内的气泡形态和传热情况 ,发现窄缝流动沸腾换热强化的原因在于流道尺寸较小 ,气泡的形状发生变化 ,增加了界面体积浓度 ,并强化了对加热面附近的扰动 ,使换热有所强化。通过与实际测量的壁温数据进行比较 ,发现用于计算大流道和池过冷沸腾换热的 Rohsenow关系式预测窄流道内高热流密度下的过冷流动沸腾换热的误差不大 ,但对于较低热流密度下的过冷流动沸腾时误差较大 ;通过最小二乘法对 Rohsenow关系式进行修正后 ,误差低于± 2 5 %。  相似文献   

6.
等壁温条件下潜热型功能热流体换热强化机理的理论研究   总被引:8,自引:0,他引:8  
从对流与导热的相似性出发,揭示了潜热型功能热流体强化换热的物理机制。基于等效比热模型,对影响速度充分发展的等壁温圆管内该类流体层流流动换热强化的各因素进行了敏感性分析,弄清了影响换热强化的主要因素及其强化换热的机理,并改进了内部流动传统的Nu定义,使之能完全表征功能热流体换热器的程度,并和外部流动的Nu定义统一,有助于内部流动和外部流动对流换热的统一评价。  相似文献   

7.
《可再生能源》2013,(5):18-21
用铜丝制成双叶螺旋线圈和三叶螺旋线圈内插物,置于平板型太阳能集热器的流道内,以强化流道管壁与工作介质之间换热。在定热流条件下,进行了空管、扭带管、双叶螺旋线圈管和三叶螺旋线圈管的换热性能研究;在常温下进行了阻力试验。试验结果表明,双叶螺旋线圈管Nu数增加了68.4%~200.7%,阻力系数增加238.7%~794.6%;三叶螺旋线圈Nu数增加106.1%~272%,阻力系数增加470.8%~906.8%。通过回归分析给出了f和Nu与影响因素计算式。研究表明,双叶螺旋线圈管道和三叶螺旋线圈管道换热均优于空管和扭带管;三叶螺旋线圈管道比双叶螺旋线圈的换热效果更佳。  相似文献   

8.
为分析套管内海水流动的对流换热特性,搭建了套管内海水流动的实验台,通过实验数据确定了套管内海水温度分布,并得出实验范围内的换热准则关联式,并对拟合换热关联式的误差进行了分析。结果表明:套管内海水对流换热的强弱主要由换热装置尺寸、海水物性以及紊流热扩散系数决定;实验数据拟合得出,在热流密度为1.66×10~4~6.6×10~4 W/m~2、雷诺数为4 837~16 068时,恒热流条件下套管内海水换热准则关联式为Nu=0.015Re~(0.645)Pr~(0.39);拟合换热关联式的误差分析发现,主要工况的Nu实验值与拟合关联式的Nu数值误差范围在±20%以内。  相似文献   

9.
随着对强化传热的广泛重视与研究,利用混沌对流来强化传热的新技术得到了关注.利用CFD软件Fluent对C型混沌结构内的流体流动与传热进行数值模拟,对比了C型混沌结构与普通平直结构在流体流动场、温度场分布和传热特性等细观信息,分析了C型混沌结构的强化传热性能及特点.分析结果表明,C型混沌结构使流体在较小速度下产生混沌对流,这种流态增加了流体的扰动与湍动,增大主流区或近壁处流动的混合,强化了流道内的传热,使流道横截面上的温度分布均匀化;混沌对流内的传热Nu数和Po数(即fRe值)不再象普通层流为一定值,而随Re数的增大而增大.  相似文献   

10.
贾力  彭晓峰 《工业加热》2002,31(5):28-30
研究了混合气体在垂直圆管内的对流凝结传热。利用修正的膜模型与Nusselt凝结理论建立了换热数学模型,预测了壁面温度对膜厚度和界面温度的影响,计算了凝结液膜厚度,并与报相热阻法进行比较,研究结果表明该模型更接近实验果,提出了混合气体对流凝结换热与Nusselt凝结的不同。  相似文献   

11.
An experimental investigation has been carried out to study the heat transfer and pressure drop characteristics of nanofluid flow inside horizontal flattened tubes under constant heat flux. The nanofluid is prepared by dispersion of CuO nanoparticle in base oil and stabilized by means of an ultrasonic device. Nanofluids with different particle weight concentrations of 0.2%, 0.5%, 1% and 2% are used. Copper tubes of 11.5 mm I.D. are flattened into oblong shapes and used as test sections. The nanofluid flowing inside the tube is heated by an electrical heating coil wrapped around it. Required data are acquired for laminar and hydrodynamically fully developed flow inside round and flattened tubes.The effect of different parameters such as flow Reynolds number, flattened tube internal height and nanofluid particle concentration on heat transfer coefficient and pressure drop of the flow is studied. Observations show that the heat transfer performance is improved as the tube profile is flattened. Flattening the tube profile resulted in pressure drop increasing. In addition, the heat transfer coefficient as well as pressure drop is increased by using nanofluid instead of base fluid. Furthermore, the performance evaluation of the two enhanced heat transfer techniques studied in this investigation shows that applying flattened tubes instead of the round tube is a more effective way to enhance the convective heat transfer coefficient compared to the second method which is using nanofluids instead of the base liquid.  相似文献   

12.
光管内插入扭带传热与流动阻力的试验研究   总被引:3,自引:1,他引:2  
张华  周强泰 《节能技术》2005,23(2):122-125
为了研究管内强化换热技术,对三根不同结构参数的扭带插入光管的换热特性和流体动力学特性进行了试验研究。试验以空气为工质,Re在8000~10^5之间,管外被水冷却。对大量实验数据用多元线性回归法得到了具有较高精度的扭带管的传热系数和摩擦系数的统计关联式,分析了扭带管的传热与流阻性能,为换热器的设计及改造提供了理论依据。  相似文献   

13.
The present study investigated the effect of smooth tube flattening on heat transfer enhancement in an evaporator. The tubes with internal diameter of 8.7 mm were flattened into an oblong shape with different inside heights. The test setup was basically a vapor compression refrigeration system equipped with all necessary measuring instruments. Refrigerant R-134a flowing inside the tube was heated by an electrical coil heater wrapped around it. The ranges of mass velocities were from 74 to 106 kg/m2-s and vapor quality varied from 25% to 95%. Analysis of the collected data indicated that the heat transfer coefficient elevates by increasing the mass velocity and vapor quality in flattened tubes just like the round tube. The flow boiling heat transfer coefficient increases when the flattened tube is used instead of the round tube. The highest heat transfer coefficient enhancement of 172% was achieved for the tube with the lowest inside height at mass velocity of 106 kg/m2-s and vapor quality of 85%. Finally, based on the present experimental results, a correlation was developed to predict the heat transfer coefficient in flattened tubes.  相似文献   

14.
A method for post dryout mist flow forced convection heat transfer is presented and recommended. Comparison is made with other methods and with data for round tubes and rod bundles.  相似文献   

15.
The characteristics of local heat transfer and pressure drops were experimentally investigated using condensing R134a two-phase flow, in single rectangular tubes, with hydraulic diameter of 0.494, 0.658, and 0.972 mm. New experimental techniques were used to measure the in-tube condensation heat transfer coefficient especially for the low heat and mass flows. Tests were performed for a mass flux of 100, 200, 400, and 600 kg/m2s, a heat flux of 5 to 20 kW/m2, and a saturation temperature of 40℃. In this study, effect of heat flux, mass flux, vapor qualities, and hydraulic diameter on flow condensation were investigated and the experimental local condensation heat transfer coefficients and frictional pressure drop are shown. The experimental data of condensation Nusselt number are compared with previous correlations, most of which are proposed for the condensation of pure refrigerant in a relatively large inner diameter round tubes.  相似文献   

16.
愈发严重的能源和环境问题要求内燃机的结构更加紧凑和复杂,导致缸盖等零部件所受的热负荷急剧增加,这对其内部冷却水腔提出了更高的换热要求。对流换热已不能满足苛刻的冷却要求,沸腾换热应运而生。据气泡动力学可知,汽化核心更倾向于分布在狭窄的凹坑处,因此在加热面上布置一定的表面形貌能够有效提高沸腾换热效果。文中设计4种形貌,并比较分析不同形貌的强化换热能力。结果表明:圆柱形凸起形貌强化沸腾换热和对流换热的效果最好,其次是圆柱形凹坑形貌,圆台形凹坑强化沸腾换热的效果好于半球形凹坑形貌,但强化对流换热的效果比半球形凹坑形貌差。不同凹坑形貌,汽化核心更倾向于分布在凹坑底部的狭窄区域,圆柱形凹坑底部狭窄区域的范围最广,有利于汽泡成核,圆台形凹坑次之,而半球形凹坑内部较为平整,不利于成核。  相似文献   

17.
In many heat exchanger applications, working fluid inside the tubes is subjected to considerable temperature changes. Coiled tubes are used widely in heat exchanger applications due to the enhanced heat transfer rate caused by secondary flows. This study examines the thermal performance of three configurations of coiled tubes of square cross-section, namely, in-plane, helical, and conical coiled tubes, subjected to a large temperature difference between the fluid and the wall and compares it with that of a straight tube of identical cross-section area and length. The concept of figure of merit (FoM) is introduced to compare the heat transfer performance of the various configurations tested. The results indicate that FoM increases as the wall temperature is increased. In addition, the combination of temperature-induced buoyant flow and curvature-induced secondary flow significantly affects the flow behavior and heat transfer performance inside the tubes. The coil pitch in helical and conical tubes has an adverse effect on the heat transfer performance due to shift in vortices generation. The in-plane spiral tube operates at a higher wall temperature and lower Reynolds number, which gives rise to a higher FoM. The highest Nusselt number is obtained for the in-plane spiral tube at higher wall temperature and higher Reynolds number, which shows potential for practical applications.  相似文献   

18.
本研究对比分析了三维内肋管及三维变形管的结构特点和强化传热机理,在相同工况下,揭示了光滑圆管、三维内肋管及三维变形管用于管式空气预热器时的传热性能和流动阻力性能,三维内肋管和三维变形管传热性能均优于光滑圆管,三维变形管管内传热系数和流动阻力系数随短长轴B/A的减小而增大,三维内肋管可增加每米肋数、肋宽和肋高以强化传热效果,但流体流动阻力也将增加,低Re下,三维变形管管内综合传热性能优于三维内肋管,三维变形管管外自支撑而防止管束振动的特点可以实现在管内外的冷热流体纯逆流动,提出一种传热温差高的逆流三维变空间管式空气预热器,在相同工况条件下,空气预热器重量减轻,体积减小约65%,节省大量的生产和运输成本以及安装空间,三维变形管空气预热器在烟气余热利用中具有推广应用价值。  相似文献   

19.
A numerical simulation has been carried out to investigate the heat transfer enhancement in a shell-and-tube heat exchanger using a porous medium inside its shell and tubes, separately. A three-dimensional geometry with k-? turbulent model is used to predict the heat transfer and pressure drop characteristics of the flow. The effects of porosity and dimensions of these media on the heat exchanger's thermal performance and pressure drop are analyzed. Inside the shell, the entire tube bundle is wrapped by the porous medium, whereas inside the tubes the porous media are located in two different ways: (1) at the center of the tubes, and (2) attached to the inner wall of the tubes. The results showed that this method can improve the heat transfer at the expense of higher pressure drop. Evaluating the method showed that using porous media inside the shell, with particular dimension and porosity can increase the heat transfer rate better than pressure drop. Using this method inside the tubes leads to two diverse results: In the first configuration, pressure loss prevails over the heat transfer augmentation and it causes energy loss, whereas in the second configuration a great performance enhancement is observed.  相似文献   

20.
Series solutions are presented for laminar flow heat transfer in narrow rectangular ducts and circular tubes when the hydrodynamic and thermal boundary layers are developing simultaneously. In addition, simple engineering relationships are presented which agree well with literature values over a wide range of Peclet numbers.It is demonstrated how simplified local heat flux calculations may be performed using the results obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号