首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nonlinear volt-ampere characteristics and small-signal ac capacitance and resistance of sintered ZnO containing 0.5 mol% Bi2O3 were measured. Many of the electrical properties are related directly to the microstructure, which consists of conductive ZnO grains separated by a continuous amorphous Bl2O3, phase. The origin of the nonlinear conduction in the intergranular phase was confirmed by experiments with evaporated thin films. The proposed conduction mechanism in varistors containing ZnO and Bi2O3 is a combination of hopping and tunneling in the amorphous phase.  相似文献   

2.
Diffusion of molten Bi2O3 into the grain boundaries of sintered, alumina-doped (0.23 and 0.7 mol%) ZnO pellets resulted in varistors with breakdown voltages in the 3–5 V range and nonlinearity coefficients of 10–24. The varistors were fabricated by spreading a thin layer of Bi2O3 powder on the surface of ZnO pellets and heating the combination to various temperatures (860–1155°C) and different times. The highest nonlinearity coefficients (20–24) and lowest breakdown voltages (3–5 V) were recorded in samples annealed at 860°C for 35 min. Longer annealing times and/or higher temperatures resulted in progressively higher breakdown voltages. Eventually the devices became insulating, which was attributed to the formation of an insulating Bi2O3 layer between the grains. Separate wetting experiments have shown that the penetration of Bi2O3 into ZnO grain boundaries was a strong function of alumina doping —the penetration rate was decreased by a factor of 5–7 as the ZnO was doped with as little as 0.2 mol% alumina. It is this slowing down of the penetration of the ZnO grain boundaries that is believed to be critical in the development of the low breakdown voltages observed.  相似文献   

3.
Current ( I )-voltage ( V ) characteristics of porous ZnO varistors with different Bi2O3 content have been investigated in air as well as in H2-air mixtures in the temperature range room temperature (RT)-600°C. The I-V characteristics measured at RT remained unchanged in the presence of H2, but the breakdown voltage clearly shifted to a lower electric field in the temperature range 400–600°C. The breakdown voltage decreased with increasing H2 concentration in air. The optimum amount of Bi2O3 for the largest decrease was found to be 1.0 mol%. Thus, ZnO varistors can be used as a new type of H2 sensor. The results presented in this study also suggest the important role of excess oxygen ions existing at the ZnO-ZnO grain boundaries in developing the Schottky barrier as well as in the H2-sensing mechanism of the varistors.  相似文献   

4.
Grain growth of ZnO during the liquid-phase sintering of binary ZnO–Bi2O3 ceramics has been studied for Bi2O3 contents from 3 to 12 wt% and sintering from 900° to 1400°C. The results are considered in combination with previously published studies of ZnO grain growth in the ZnO–Bi2O3 system. For the Bi2O3 contents of the present study, the rate of ZnO grain growth is found to decrease with increasing Bi2O3. Activation analysis, when combined with the results of similar analyses of the previous studies, reveals a change in the rate-controlling mechanism for ZnO grain growth. Following a low-Bi2O3-content region of nearly constant activation energy values of about 150 kJ/mol, further Bi2O3 additions cause an increase of the activation energy to about 270 kJ/mol. consistent with accepted models of liquid-phase sintering, it is concluded that the rate-controlling mechanism of ZnO grain growth during liquid-phase sintering in the presence of Bi2O3 changes from one of a phase-boundary reaction at low Bi2O3 levels to one of diffusion through the liquid phase at about the 5 to 6 wt% Bi2O3 level and above.  相似文献   

5.
Grain growth in a high-purity ZnO and for the same ZnO with Bi2O3 additions from 0.5 to 4 wt% was studied for sintering from 900° to 1400°C in air. The results are discussed and compared with previous studies in terms of the phenomenological kinetic grain growth expression: G n— G n0= K 0 t exp(— Q/RT ). For the pure ZnO, the grain growth exponent or n value was observed to be 3 while the apparent activation energy was 224 ± 16 kJ/mol. These parameters substantiate the Gupta and Coble conclusion of a Zn2+ lattice diffusion mechanism. Additions of Bi2O3 to promote liquidphase sintering increased the ZnO grain size and the grain growth exponent to about 5, but reduced the apparent activation energy to about 150 kJ/mol, independent of Bi2O3 content. The preexponential term K 0 was also independent of Bi2O3 content. It is concluded that the grain growth of ZnO in liquid-phase-sintered ZnO-Bi2O3 ceramics is controlled by the phase boundary reaction of the solid ZnO grains and the Bi2O3-rich liquid phase.  相似文献   

6.
Detailed analysis of the microstructure of grain boundaries, especially triple-grain and multiple-grain junctions, in ZnO varistor materials has been performed using transmission electron microscopy. Different polymorphs of Bi2O3 are shown to exhibit different wetting properties on ZnO interfaces. Recent investigations suggest that the equilibrium configuration consists of crystalline Bi2O3 in the triple-grain and multiple-grain junctions and an amorphous bismuth-rich film in the ZnO/ZnO grain boundaries. The present investigation supports this suggestion for δ-Bi2O3 and also adds to the microstructural image and wetting properties of α-Bi2O3.  相似文献   

7.
Zinc oxide (ZnO) nanoparticles coated with 1–5 wt% Bi2O3 were prepared by precipitating a Bi(NO3)3 solution onto a ZnO precursor. Transmission electron microscopy showed that a homogeneous Bi2O3 layer coated the surface of the ZnO nanoparticles and that the ZnO particle size was ∼30–50 nm. Scanning electron microscopy showed that ZnO grains sintered at 1150°C were homogeneous in size and surrounded by a uniform Bi2O3 layer. When the ZnO grains were surrounded fully by Bi2O3 liquid phases, further increases in the ZnO grain size were not affected by the Bi2O3 content. This predesigned ZnO nanoparticle structure was shown to promote homogeneous ZnO grains with perfect crystal growth.  相似文献   

8.
Pore–boundary separation in ZnO and 99.95ZnO·0.05Bi2O3 (in mol%) specimens during sintering at 1200°C was investigated. In pure ZnO specimens, pores were attached to the grain boundaries and disappeared during the final stage of sintering. In the Bi2O3-doped specimens, on the other hand, many pores were separated from the boundaries and trapped inside the grains. Observation using transmission electron microscopy showed that a thin layer of Bi2O3-rich phase existed at the boundaries in the Bi2O3-doped specimens. The pore separation in 99.95ZnO·0.05Bi2O3 specimens was explained in terms of the dihedral angle change and the high mobility of a liquid film boundary.  相似文献   

9.
Effects of excess Bi2O3 content on formation of (Bi3.15Nd0.85)Ti3O12 (BNT) films deposited by RF sputtering were investigated. The microstructures and electrical properties of BNT thin films are strongly dependent on the excess Bi2O3 content and post-sputtering annealing temperature, as examined by XRD, SEM, and P – E hysteresis loops. A small amount of excess bismuth improves the crystallinity and therefore polarization of BNT films, while too much excess bismuth leads to a reduction in polarization and an increase in coercive field. P – E loops of well-established squareness were observed for the BNT films derived from a moderate amount of Bi2O3 excess (5 mol%), where a remanent polarization 2P r of 25.2 μC/cm2 and 2E c of 161.5 kV/cm were shown. A similar change in dielectric constant with increasing excess Bi2O3 content was also observed, with the highest dielectric constant of 304.1 being measured for the BNT film derived from 5 mol% excess Bi2O3.  相似文献   

10.
The Bi2O3-PbO phase diagram was determined using differential thermal analysis and both room- and high-temperature X-ray powder diffraction. The phase diagram contains a single eutectic at 73 mol% PbO and 635°C. A body-centered cubic solid solution exists above ∼600°C within a composition range of 30 to 65 mol% PbO. The compounds α-Bi2O3, σ5-Bi2O3, and γ-PbO (litharge) have wide solubility ranges. Four compounds, 6Bi2O3·PbO, 3Bi2O3·2PbO, 4Bi2O3,5PbO, and Bi2O3·3PbO, are formed in this system and the previously unreported X-ray diffraction patterns of the latter three compounds are reported. Diffraction patterns for some of these mixed oxides have been observed in ZnO-based varistors grown using Bi2O3 and PbO as sintering aids.  相似文献   

11.
In the system Bi2O3-SiO2-GeO2, good glasses can be formed only from limited compositional regions consisting of 2 narrow strips along the lines x Bi2O3-(100-:t) GeO2 ( x ≤40) and 40Bi2O3 y SiO2 (60- y )GeO2 (mol%); such glass is dark brown. Compositions from a large region (Bi2O3 content <40 mol%) showed immiscibility. In the binary system Bi2O3-GeO2, density and refractive index vary linearly with composition (mol%). Negative deviations of molar volume from ideality suggest that the coordination of a significant number of Ge ions is changing from 4-fold to 6-fold. Thermal expansion and electrical resistivity data are also reported.  相似文献   

12.
The intergranular phase obtained by sintering a binary mixture of ZnO + 0.5 mol% Bi2O3 was isolated by using a dilute solution of HCIO4, which etches ZnO preferentially. The combined results of selected-area electron diffraction and microscopy, microprobe analysis, and X-ray diffraction strongly indicate that the intergranular material is a polycrystalline phase of tetragonal β-Bi2O3 ( P 421 c ), rather than the amorphous ZnO-Bi2O3 phase reported earlier. It appears that the nonohmic behavior in this prototype metal-oxide varistor must be an interfacial property associated with the semiconducting ZnO grains separated by thin layers of high-resistivity Bi2O3.  相似文献   

13.
Lead-free piezoelectric (K0.5Na0.5)NbO3– x wt% Bi2O3 ceramics have been synthesized by an ordinary sintering technique. The addition of Bi2O3 increases the melting point of the system and improves the sintering temperature of (K0.5Na0.5)NbO3 ceramics. All samples show a pure perovskite phase with a typical orthorhombic symmetry when the Bi2O3 content <0.7 wt%. The phase transition temperature of orthorhombic–tetragonal ( T O − T ) and tetragonal–cubic ( T C) slightly decreased when a small amount of Bi2O3 was added. The remnant polarization P r increased and the coercive field E c decreased with increasing addition of Bi2O3. The piezoelectric properties of (K0.5Na0.5)NbO3 ceramics increased when a small amount of Bi2O3 was added. The optimum piezoelectric properties are d 33=140 pC/N, k p=0.46, Q m=167, and T C=410°C for (K0.5Na0.5)NbO3–0.5 wt% Bi2O3 ceramics.  相似文献   

14.
A 2.45 GHz microwave-sintered Si3N4–Y2O3–MgO system containing various amounts of ZrO2 secondary additives have been studied with respect to phase transformation and densification behavior. The temperature dependent dielectric properties were measured from 25°C to 1400°C using a conventional cavity perturbation technique. Phase transformation behavior was studied using X-ray diffractometry. Microwave sintered results were compared with those of conventional sintered results. It has been found that α to β phase transformation was completed at a lower temperature in microwave-sintered samples than those of the conventionally sintered samples. Density of the microwave-sintered samples increased up to 2.5 wt% of ZrO2 addition and thereafter it showed a tendency to decrease or remain constant. The decrease in density is attributed to the pore generation caused by decomposition due to the localized over heating.  相似文献   

15.
Effects of Bismuth Sesquioxide on the Characteristics of ZnO Varistors   总被引:3,自引:0,他引:3  
The nonlinearity of ZnO varistors is significantly influenced by the Bi2O3 and Sb2O3 contents, as well as by the phase composition of the Bi2O3. Degradation of the current-voltage characteristics due to the applied voltage is not always lowered by the β—γ transition of the Bi2O3 phase. Lattice parameter determinations and stress analyses suggest that the Bi2O3-rich phase in multigrain junctions causes mechanical strain at the grain boundary which may play an important role in the current-voltage characteristics of ZnO varistors.  相似文献   

16.
Dolomite-type borate ceramics consisting of CaZrB2O6 were synthesized via a conventional solid-state reaction route; low-temperature sintering was explored using Bi2O3–CuO additives of 1–7 wt% for low-temperature co-fired ceramics applications. For several sintering temperatures, the microwave dielectric properties and chemical resistance of the ceramics were investigated. The CaZrB2O6 ceramics with 3 wt% Bi2O3–CuO addition could be sintered below 925°C, and the microwave dielectric properties of the low-temperature samples were ɛr=10.55, Q × f =87,350 GHz, and τf=+2 ppm/°C. The chemical resistance test result showed that both CaZrB2O6- and Bi2O3–CuO-added CaZrB2O6 ceramics were durable in basic solution but were degraded in acid solution.  相似文献   

17.
Single crystals of superlattice-structured ferroelectrics composed of Bi4Ti3O12 and PbBi4Ti4O15 were grown and the properties of polarization hysteresis and leakage current along the a -axis were investigated. Oxidation treatment led to a marked increase in leakage current at room temperature, showing that electron hole acts as a detrimental carrier for electrical conduction. A well-developed polarization hysteresis with a remanent polarization of 41 μC/cm2 was observed, which is suggested to originate from the peculiar ferroelectric displacement of Bi in the Bi2O2 layers.  相似文献   

18.
The effect of the addition of Bi2O3 on the densification, low-temperature sintering, and electromagnetic properties of Z-type planar hexaferrite was investigated. The results show that Bi2O3 additives can improve the densification and promote low-temperature sintering of Z-type hexaferrite prepared by a solid-state reaction method. The presence of Bi2O3 in the grain boundaries and the generation of Fe2+ degrade the initial permeability of the samples but make the quality factor and cut-off frequency increase. Various possible mechanisms involved in generating these effects were also discussed.  相似文献   

19.
Extended defects in ZnO ceramics containing, 6 wt% Bi4Ti3O12 were studied by analytical electron microscopy. Apart from basal plane condensation stacking faults, which are also present in as-received ZnO, extended defects related to the presence of Bi4Ti3O12 were observed. In samples sintered at 900°C they lie in the basal or in the prismatic     planes and they quite often form closed loops, whereas they form serpentine-shaped boundaries in samples sintered at 1200°C. Evidence is given that they are inversion boundaries. Their TEM image characteristics, as well as the unambiguous presence of Ti at the boundaries, suggest that they are formed due to the presence of 2-D coherent precipitates of Ti-rich (possibly Zn2TiO4-type spinel) phase.  相似文献   

20.
The high-energy ball-milling (HEM) method was used to synthesize the compositions of BiNbO4, Bi5Nb3O15, and Bi3NbO7 in a Bi2O3–Nb2O5 binary system. Reagent Bi2O3 and Nb2O5 were chosen as the starting materials. The X-ray diffraction patterns of the three compositions milled for different times were studied. Only the cubic Bi3NbO7 phase, Nb2O5, and amorphous matters were observed in powders after being milled for 10 h. After heating at proper temperatures the amorphous matters disappeared and the proleptic phases of BiNbO4 and Bi5Nb3O15 could be obtained. The Scherrer formula was used to calculate the crystal size and the results of nanopowders are between 10 and 20 nm. The scanning electron microscopy photos of Bi3NbO7 powders showed drastic aggregation, and the particle size was about 100 nm. The dielectric properties of ceramics sintered from the nanopowders prepared by HEM at 100–1 MHz and the microwave region were measured. Bi3NbO7 ceramics showed a good microwave permittivity ɛr of about 80 and a Q × f of about 300 at 5 GHz. The triclinic phase of BiNbO4 ceramics reached its best properties with ɛr=24 and Q × f =14 000 GHz at about 8 GHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号