共查询到20条相似文献,搜索用时 0 毫秒
1.
With the use of the copper(I)-catalyzed (3 + 2) azide-alkyne cycloaddition, an element of "click chemistry," stationary phases carrying long alkyl chains or soybean trypsin inhibitor have been prepared for use in HPLC separations in the reversed-phase and affinity modes, respectively. The ligands were attached via a triazole ring to size monodisperse porous beads containing either alkyne or azide pendant functionalities. Alkyne-containing beads prepared by direct copolymerization of propargyl acrylate with ethylene dimethacrylate were allowed to react with azidooctadecane to give a reversed-phase sorbent. Azide-functionalized beads were prepared by chemical modification of glycidyl methacrylate particles. Subsequent reaction with a terminal aliphatic alkyne produced a reversed-phase sorbent similar to that obtained from the alkyne beads. Soybean trypsin inhibitor was functionalized with N-(4-pentynoyloxy)succinimide to carry alkyne groups and then allowed to react with the azide-containing beads to produce an affinity sorbent for trypsin. The performance of these stationary phases was demonstrated with the HPLC separations of a variety of peptides and proteins. 相似文献
2.
Development of engineered stationary phases for the separation of carotenoid isomers 总被引:4,自引:0,他引:4
A variety of bonded phase parameters (endcapping, phase chemistry, ligand length, and substrate parameters) were studied for their effect on column retention and selectivity toward carotenoids. Decisions were made on how each of these variables should be optimized based on the separation of carotenoid and polycyclic aromatic hydrocarbon test probes. A column was designed with the following properties: high absolute retention, enhanced shape recognition of structured solutes, and moderate silanol activity. These qualities were achieved by triacontyl (C30) polymeric surface modification of a moderate pore size (approximately 20 nm), moderate surface area (approximately 200 m2/g) silica, without subsequent endcapping. The effectiveness of this "carotenoid phase" was demonstrated for the separation of a mixture of structurally similar carotenoid standards, an extract of a food matrix Standard Reference Material, and a beta-carotene dietary supplement under consideration as an agent for cancer intervention/prevention. 相似文献
3.
Chiral ionic liquids as stationary phases in gas chromatography 总被引:9,自引:0,他引:9
Recently, it has been found that room-temperature ionic liquids can be used as stable, unusual selectivity stationary phases. They show "dual nature" properties, in that they separate nonpolar compounds as if they are nonpolar stationary phases and separate polar compounds as if they are polar stationary phases. Extending ionic liquids to the realm of chiral separations can be done in two ways: (1) a chiral selector can be dissolved in an achiral ionic liquid, or (2) the ionic liquid itself can be chiral. There is a single precedent for the first approach, but nothing has been reported for the second approach. In this work, we present the first enantiomeric separations using chiral ionic liquid stationary phases in gas chromatography. Compounds that have been separated using these ionic liquid chiral selectors include alcohols, diols, sulfoxides, epoxides, and acetylated amines. Because of the synthetic nature of these chiral selectors, the configuration of the stereogenic center can be controlled and altered for mechanistic studies and reversing enantiomeric retention. 相似文献
4.
High-stability ionic liquids. A new class of stationary phases for gas chromatography 总被引:2,自引:0,他引:2
Room-temperature ionic liquids are a class of non-molecular ionic solvents with low melting points. Their properties have the potential to be especially useful as stationary phases in gas-liquid chromatography (GLC). A series of common ionic liquids were evaluated as GLC stationary phases. It was found that many of these ionic liquids suffer from low thermal stability and possess unfavorable retention behavior for some classes of molecules. Two new ionic liquids were engineered and synthesized to overcome these drawbacks. The two new ionic liquids (1-benzyl-3-methylimidazolium trifluoromethanesulfonate and 1-(4-methoxyphenyl)-3-methylimidazolium trifluoromethanesulfonate) are based on "bulky" imidazolium cations with trifluoromethanesulfonate anions. Their solvation characteristics were evaluated using the Abraham solvation parameter model and correlations made between the structure of the cation and the degree to which the ionic liquids retain certain analytes. The new ionic liquids have good thermal stability up to 260 degrees C, provide symmetrical peak shapes, and because of their broad range of solvation-type interactions, exhibit dual-nature selectivity behavior. In addition, the ionic liquid stationary phases provided different retention behavior for many analytes compared to a commercial methylphenyl polysiloxane GLC stationary phase. This difference in selectivity is due to the unique solvation characteristics of the ionic liquids and makes them very useful as dualnature GLC stationary phases. 相似文献
5.
A new approach for the synthesis of long alkyl chain length stationary phases for use in reversed-phase liquid chromatography is described. Poly(ethylene-co-acrylic acid) copolymers (i.e., (-CH2CH2-)x[CH2CH(CO2H)-]y) with different levels of acrylic acid were covalently bonded to silica via glycidoxypropyl or aminopropyl linkages. 13C cross polarization magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR) spectroscopy was used to characterize the new reversed-phase materials. Aspects of shape selectivity were evaluated for six different columns with Standard Reference Material (SRM) 869a, Column Selectivity Test Mixture for Liquid Chromatography. Selectivity for isomer separations was enhanced for stationary phases prepared with poly(ethylene-co-acrylic acid) containing a mass fraction of 5% acrylic acid. The relationship between alkyl conformation and chromatographic properties was studied by 13C magic angle spinning (MAS) NMR measurements, and correlations were made with the composition of the polymer. Finally, the effectiveness of this phase is demonstrated by the separation of several beta-carotene isomers. 相似文献
6.
Polar-liquid, derivatized cyclodextrin stationary phases for the capillary gas chromatography separation of enantiomers 总被引:1,自引:0,他引:1
A new class of hydrophilic, relatively polar liquid, cyclodextrin (CD) derivatives have been used as highly selective chiral stationary phases (CSPs) for capillary gas chromatography (GC). Several possible requirements for liquidity in CD derivatives are discussed. O-(S)-2-Hydroxypropyl derivatives of alpha-, beta-, and gamma-cyclodextrins were synthesized, exclusively characterized, permethylated, and evaluated for enantioselectivity. Seventy pairs of enantiomers were resolved. They represent a wide variety of structural types and classes of compounds including chiral alkyl amines, amino alcohols, epoxides, pyrans, furans, sugars, diols, esters, ketones, bicyclic compounds, alcohols, and so on. Many of these compounds were not aromatic and cannot be resolved on any known liquid chromatographic CSP. Often, these enantiomers had far less functionality than required for LC separation. General properties of these CSPs as well as possible insights into the separation mechanism are discussed. 相似文献
7.
8.
Monolithic column with zwitterionic stationary phase for capillary electrochromatography 总被引:1,自引:0,他引:1
A capillary electrochromatography (CEC) monolithic column with zwitterionic stationary phases was prepared by in situ polymerization of butyl methacrylate, ethylene dimethacrylate, methacrylic acid, and 2-(dimethyl amino) ethyl methacrylate in the presence of porogens. The stationary phases have zwitterionic functional groups, that is, both tertiary amine and acrylic acid groups, so the ionization of those groups on the zwitterionic stationary phase was affected by the pH values of the mobile phase, and further affects the strength and direction of the electroosmotic flow (EOF). Separations of alkylbenzenes and polycyclic aromatic hydrocarbons based on the hydrophobic mechanism were obtained. Separation of various types of polar compounds, including phenols, anilines, and peptides, on the prepared column were performed under CEC mode with anodic and cathodic EOF, and different separation selectivities of those polar analytes were observed on the monolithic capillary column by using mobile phases with different pH values. 相似文献
9.
Immobilized ionic liquids as high-selectivity/high-temperature/high-stability gas chromatography stationary phases 总被引:4,自引:0,他引:4
Ionic liquids (ILs) are a class of nonmolecular solvents in which the cation/anion combination can be easily tuned to provide desired chemical and physical properties. When used as stationary phases in gas-liquid chromatography, ionic liquids exhibit dual nature retention selectivity. That is, they are able to separate polar molecules such as a polar stationary phase and nonpolar molecules such as a nonpolar stationary phase. However, issues such as optimization of the wetting ability of the ionic liquid on fused-silica capillaries, the maximum operating temperatures of the stationary phases, and nonuniform film thickness on the wall of the capillary at high temperatures have limited their use in gas chromatography. As described in this paper, these limitations are overcome by cross-linking a new class of ionic liquid monomers by free radical reactions to provide a more durable and robust stationary phase. By lightly cross-linking the ionic liquid stationary phase using a small amount of free radical initiator, high-efficiency capillary columns were produced that are able to endure high temperatures with little column bleed. Two types of cross-linked IL stationary phases are developed. A partially cross-linked stationary phase allows for high-efficiency separations up to temperatures of approximately 280 degrees C. However, by creating a more highly cross-linked stationary phase of geminal dicationic ILs, exclusively, an increase in efficiency is observed at high temperatures allowing for its use over 350 degrees C. In addition, through the use of solvation thermodynamics and interaction parameters, it was shown that the cross-linking/immobilization of the ionic liquid does not affect the selectivity of the stationary phase thereby preserving its dual nature retention behavior. 相似文献
10.
In an attempt to overcome the limited applicability scope of earlier proposed Cinchona alkaloid-based chiral weak anion exchangers (WAX) and recently reported aminosulfonic acid-based chiral strong cation exchangers (SCX), which are conceptionally restricted to oppositely charged solutes, their individual chiral selector (SO) subunits have been fused in a combinatorial synthesis approach into single, now zwitterionic, chiral SO motifs. The corresponding zwitterionic ion-exchange-type chiral stationary phases (CSPs) in fact combined the applicability spectra of the parent chiral ion exchangers allowing for enantioseparations of chiral acids and amine-type solutes in liquid chromatography using polar organic mode with largely rivaling separation factors as compared to the parent WAX and SCX CSPs. Furthermore, the application spectrum could be remarkably expanded to various zwitterionic analytes such as alpha- and beta-amino acids and peptides. A set of structurally related yet different CSPs consisting of either a quinine or quinidine alkaloid moiety as anion-exchange subunit and various chiral or achiral amino acids as cation-exchange subunits enabled us to derive structure-enantioselectivity relationships, which clearly provided strong unequivocal evidence for synergistic effects of the two oppositely charged ion-exchange subunits being involved in molecular recognition of zwitterionic analytes by zwitterionic SOs driven by double ionic coordination. 相似文献
11.
Aqueous chromatography utilizing pH-/temperature-responsive polymer stationary phases to separate ionic bioactive compounds 总被引:2,自引:0,他引:2
Cross-linked poly(N-isopropylacrylamide-co-acrylic acid) (poly(IPAAm-co-AAc))-grafted silica bead surfaces were prepared and applied as new column matrix materials that exploit temperature-responsive anionic chromatography to separate basic bioactive compounds, specifically catecholamine derivatives, in aqueous mobile phases. Since poly(IPAAm-co-AAc) has a well-known temperature-responsive phase transition and apparent pKa shift, polymer-grafted silica bead surfaces are expected to exhibit simultaneous hydrophilic/hydrophobic and charge density alterations under thermal stimuli. Elution behavior of catecholamine derivatives from a copolymer-modified bead packed column was monitored using aqueous mobile-phase HPLC under varying temperature and pH. Catecholamine derivatives had higher retention times on poly(IPAAm-co-AAc) columns at higher pH in comparison with those on noncharged PIPAAm reference columns, suggesting an electrostatic interaction as a separation mode. Temperature also affected the retention behavior of catecholamine derivatives. Optimal separation of four catecholamine derivatives was achieved at elevated temperature, 50 degrees C, and at pH 7.0. This is due to the increased hydrophobicity of the stationary phase as evidenced by the elution of a nonionic hydrophobic steroid. From these results, mutual influences of both electrostatic and hydrophobic interactions between basic catecholamine derivatives and pH-/temperature-responsive surfaces are noted. Consequently, elution of weakly charged bioactive compounds is readily regulated through the modulation of stationary-phase thermoresponsive hydrophilic/hydrophobic and charge density changes. 相似文献
12.
Zirconia stationary phases for extreme separations. 总被引:1,自引:0,他引:1
13.
The enantiomeric separation of phenylthiocarbamoyl derivatives of amino acids (PTC-AAs) was studied on a series of reversed phase HPLC columns coupled to the chiral phase HPLC columns. First, the five chiral phases (native, 0.2, 3.3, 7.5 and 16.9 phenylcarbamoylated/β-cyclodextrins, Ph/CD) were newly prepared by modification of β-cyclodextrin with phenyl isocyanate and were examined for the enantiomeric separation of PTC-AAs. Among them, the 3.3Ph/CD phase gave the best enantiomeric separation (α ≥ 1.04). However, the separation of the individual PTC-AAs was not sufficient. Next, these separations were investigated on various reversed phase HPLC columns, and octyl silica was selected in terms of the suitability of the mobile phase adopted for the enantiomeric separation mentioned above. The effects of the column temperature, the ion-pairing reagent, and the final content of methanol were also studied on the tandem column of octyl silica and the 3.3Ph/CD phase. Under the best conditions (100 mM ammonium acetate (pH 6.5) containing 1 mM butanesulfonate with 0-40% methanol as the mobile phase), all the individual PTC-AAs were well separated within 150 min. The applicability of the method was demonstrated by the sequence/configuration analysis of a peptide containing a d-amino acid ([d-Thr(2)]leucine enkephalin-Thr). 相似文献
14.
Multiply scattered light through turbid media, packed particles, or compressed powders will inherently have a significantly longer optical path length than that of light which is not scattered. The concept of using the multiply scattered light potentially generated in the packed stationary phase of a capillary electrochromatography (CEC) column for enhanced detection as a result of its increased optical path length was examined. Ultraviolet (UV) light at 365 nm or laser light at 635 nm was focused to a small spot onto the packed section of a 3 microns spherisorb ODS1 CEC column (100 microns i.d.). The light was transported inside the capillary, and an image of the multiply scattered light several millimeters along the capillary was collected using a charged-couple device detector. Even if the spot size was less than 100 microns in diameter, evidence of light scattering was observed at a detection spatial off-set distance of 1-2 mm from the illumination point. When the calcium channel blocking drug felodipine was flushed through the column, the light intensity value dropped (increase in absorbance) to a greater degree at a spatial off-set (1.5 mm) than at the illumination point. The greater absorbance values at the spatial off-set were examined experimentally when felodipine was eluted from the column in the CEC mode in 6 min using MeCN/50 mM TRIS (pH 8.0) (80:20, v/v) at an applied voltage of 300 V/cm and an injection time of 2 s at 10 kV. A factor of 8.5 increase in absorbance was observed at a spatial off-set of 1 mm compared to the value obtained at the illumination point. An efficiency value of approximately 234,000 plates m-1 was obtained for this higher felodipine peak. Higher noise values, however, were also observed with this increase in absorbance. Using a spectrophotometer or an open capillary to obtain reference values for optical length, it was possible to estimate the average optical path length of light traveled through the packed stationary phase when transmitted at a spatial off-set. It was concluded that, although an increase in absorbance of 8.5 was observed at a spatial off-set, this most likely arises from the light being "redirected" and scattered in a straightforward fashion along the capillary. It was expected that if substantial multiple scattering did occur inside the packed stationary phase, a significantly larger absorbance increase would be attained. A number of proposals are thus given to explain the relatively low degree of multiple scattering in this stationary phase and suggestions offered on means to attain even higher absorbance increases at a spatial off-set. Additional potential applications are also discussed. 相似文献
15.
Mistry K Cortes H Meunier D Schmidt C Feibush B Grinberg N Krull I 《Analytical chemistry》2002,74(3):617-625
In this paper, we report the separations of large, neutral, synthetic polymers using primarily a nonaqueous mobile phase without the use of a supporting electrolyte. The size- exclusion-based mechanism for separation was achieved on sulfonated polystyrene/divinylbenzene stationary phases. The effect of water, voltage, stationary phase exchange capacity, and pore size were investigated. The stationary phase and solvent interactions were studied by attenuated total reflectance Fourier transform infrared spectroscopy (ATR FT-IR) and a possible mechanism for the generation of EOF in the THF/water system is provided. Linear calibration curves were obtained for polystyrenes ranging in MW from 5K to 2M, for columns made using a combination of high capacity ion exchanger and a neutral polystyrene/divinylbenzene material of varied pore sizes. Analysis of polyurethane, polystyrene, and other polymer samples using CEC correlated well with results obtained by conventional HPLC. The size exclusion CEC separations provide an alternative mode for determining the relative molecular weights of polymers, with reduced solvent consumption. 相似文献
16.
Examination of ionic liquids and their interaction with molecules, when used as stationary phases in gas chromatography. 总被引:15,自引:0,他引:15
Stable room-temperature ionic liquids (RTILs) have been used as novel reaction solvents. They can solubilize complex polar molecules such as cyclodextrins and glycopeptides. Their wetting ability and viscosity allow them to be coated onto fused silica capillaries. Thus, 1-butyl-3-methylimidazolium hexafluorophosphate and the analogous chloride salt can be used as stationary phases for gas chromatography (GC). Using inverse GC, one can examine the nature of these ionic liquids via their interactions with a variety of compounds. The Rohrschneider-McReynolds constants were determined for both ionic liquids and a popular commercial polysiloxane stationary phase. Ionic liquid stationary phases seem to have a dual nature. They appear to act as a low-polarity stationary phase to nonpolar compounds. However, molecules with strong proton donor groups, in particular, are tenaciously retained. The nature of the anion can have a significant effect on both the solubilizing ability and the selectivity of ionic liquid stationary phases. It appears that the unusual properties of ionic liquids could make them beneficial in many areas of separation science. 相似文献
17.
Raman spectroscopy is used to investigate the effects of temperature, surface coverage, polymerization method (surface or solution polymerized), and nature of the alkylsilane precursor on alkyl chain conformational order in a series of high-density docosylsilane (C22) stationary phases at surface coverages ranging from 3.61 to 6.97 mumol/m(2). The results of this study contribute to an enhanced understanding of the shape-selective retention characteristics of these phases at a molecular level. Conformational order is evaluated using the intensity ratio of the antisymmetric and symmetric nu(CH2) modes as well as the frequency at which these modes are observed. Alkyl chain order is shown to be dependent on surface coverage, alkyl chain length, and polymerization method. In general, alkyl chain order increases with surface coverage. Temperature-induced changes are observed between 250 and 350 K for the three phases with surface coverages between 3.61 and 4.89 mumol/m(2). These changes occur over a broad range of temperatures characteristic of two-dimensional systems, but in general adhere to the behavior predicted for a simple first-order transition. This change is not believed to be an abrupt cooperative disassociation characteristic of a phase transition in a bulk phase, but instead is thought to involve significant changes in conformational order in segments of the surface-tethered molecules, mostly those segments at the outer edge of the alkylsilane. In contrast to the changes observed in coverages below 5 mumol/m(2), a first-order change is not observed for the stationary phase with coverage of 6.97 mumol/m(2). A molecular picture of the temperature-induced disorder is proposed with disorder originating at the distal carbon and propagating only a short distance toward the proximal carbon. A comparison is made between these C22 stationary phases and similar high-density octadecylsilane (C18) bonded phases. 相似文献
18.
Suzuki Y Quina FH Berthod A Williams RW Culha M Mohammadzai IU Hinze WL 《Analytical chemistry》2001,73(8):1754-1765
Micelle-mimetic ionene-based stationary phases for high-performance liquid chromatography (HPLC) are prepared by attaching [3,16]- and [3,22]-ionenes to aminopropyl silica through a carbon-nitrogen bond. These [x,y]-ionenes are polyelectrolytic molecules consisting of dimethylammonium charge centers interconnected by alternating alkyl chain segments containing x and y methylene groups, some of which can form aggregate species whose properties mimic those of conventional surfactant micelles. These ionene-bonded stationary phases were characterized using different recommended HPLC test mixtures. Test solute chromatographic behavior on the ionene phases was found to be similar to that of intermediate oligomeric or polymeric C-18 and/or phenyl phases, depending upon the specific test mixture employed. In addition, the phases exhibit significant solute shape recognition ability. The ionene stationary phases were successfully employed for the separation of the components of the recommended ASTM reversed-phase test mixture, as well as for ortho-, meta- and para-disubstituted benzenes and other positional or geometric isomeric compounds. The ionene materials allow for chromatographic separations under either reversed-phase or ion-exchange conditions. The retention mechanism on these multimodal phases can occur by hydrophobic partitioning or electrostatic interactions, depending upon the characteristics of the components of the analyte mixture (neutral or anionic). The effects of alteration of the percent organic modifier, flow rate and temperature of the mobile phase on chromatographic retention and efficiency on these phases were briefly examined. 相似文献
19.
A novel colloid-imprinting method is employed for the preparation of carbonaceous stationary phases for reversed-phase liquid chromatography (RPLC). This colloid-imprinting method combined with oxidative stabilization treatment affords carbons with a porous shell/nonporous core structure. The particle morphology, pore size, pore shape, and Brunauer-Emmett-Teller surface area of these carbons can be finely tuned by selecting proper experimental conditions. Although their surface area and pore volume decrease noticeably after graphitization, their primary pore structure is maintained. In addition, the graphitization process eliminates the high-energy sites and substantially reduces structural heterogeneity, making colloid-imprinted carbons attractive stationary phases for reversed-phase liquid chromatography. The colloid-imprinted graphitic carbons with surface mesoporosity appeared to be attractive for chromatographic separations of alkylbenzenes under reversed-phase conditions. 相似文献
20.
Healy LO Owens VP O'Mahony T Srijaranai S Holmes JD Glennon JD Fischer G Albert K 《Analytical chemistry》2003,75(21):5860-5869
Chromatographic silica-bonded stationary phases have been prepared using supercritical CO(2) as the reaction medium. (29)Si solid-state NMR spectra of the generated bonded silica phases show unreacted silica species Q(3) and Q(4), alongside important resonances for surface-bound ligands, T(1), T(2), and T(3). Initially, a fluorinated octyl silica (C(8)) phase was produced, by reacting (1)H,(1)H,(2)H,(2)H-perfluorooctyltriethoxysilane with silica particles (3 microm) in sc-CO(2) at 60 degrees C and 450 atm for 3 h. In-house-packed LC columns of this fluorinated sc-C(8) silica phase yielded typical reversed-phase behavior when a standard test mix of benzamide (k' = 1.03), benzophenone (k' = 8.11), and biphenyl (k' = 14.92) was eluted. When packed into fused-silica capillaries for CEC, this fluorinated sc-C(8) silica phase gave linear plots of log k' versus percentage MeOH for benzophenone and biphenyl and, in contrast to octyl or octadecyl silica phases, displayed selectivity for aromatic thioureas when chromatographed among a series of synthetic organic thiourea test solutes. Similarily, an octadecyl silica phase (sc-C(18) silica) was prepared by reaction of n-octadecyltriethoxysilane in sc-CO(2), packed at 9500 psi and examined by LC. The sc-C(18) silica LC column yielded high column efficiency (up to 141 000 N/m (fluorene)) and excellent asymmetry factors (1.06, fluorene) without resource to end-capping. Following a second silylating or end-capping step using hexamethyldisilazane in sc-CO(2), sc-end-capped sc-C(18) silica phases elute N,N-DMA before toluene and the toluidine isomers as a single peak, indicating lowered silanol activity according to the Engelhardt test. A rapid separation of the important pharmaceutical substances, ketoprofen, naproxen, fentoprofen, and ibuprofen, on an sc-end-capped sc-C(18) silica phase is also shown. 相似文献