首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We establish upper and lower bounds on the layout area of the butterfly network (without wraparound), which differ only in low-order terms. Specifically, the N -input, N -output butterfly network can be laid out in area (1 + o(1)) N 2 , while no layout of the network can have area smaller than (1 - o(1)) N 2 . These results improve both the known upper bound and the known lower bound on the area of butterfly network layouts. Received October 1996, and in final form February 1997.  相似文献   

2.
We prove lower bounds on the complexity of maintaining fully dynamic k -edge or k -vertex connectivity in plane graphs and in (k-1) -vertex connected graphs. We show an amortized lower bound of (log n / {k (log log n} + log b)) per edge insertion, deletion, or query operation in the cell probe model, where b is the word size of the machine and n is the number of vertices in G . We also show an amortized lower bound of (log n /(log log n + log b)) per operation for fully dynamic planarity testing in embedded graphs. These are the first lower bounds for fully dynamic connectivity problems. Received January 1995; revised February 1997.  相似文献   

3.
E. Ruppert 《Algorithmica》2000,28(2):242-254
A concurrent-read exclusive-write PRAM algorithm is developed to find the k shortest paths between pairs of vertices in an edge-weighted directed graph. Repetitions of vertices along the paths are allowed. The algorithm computes an implicit representation of the k shortest paths to a given destination vertex from every vertex of a graph with n vertices and m edges, using O(m+nk log 2 k) work and O( log^3k log ^*k+ log n( log log k+ log ^*n)) time, assuming that a shortest path tree rooted at the destination is pre-computed. The paths themselves can be extracted from the implicit representation in O( log k + log n) time, and O(n log n +L) work, where L is the total length of the output. Received July 2, 1997; revised June 18, 1998.  相似文献   

4.
We consider the problem of merging two sorted sequences on constant degree networks performing compare—exchange operations only. The classical solution to this problem is given by the networks based on Batcher's Odd—Even Merge and Bitonic Merge running in log(2n ) time. Due to the obvious log n lower bound for the runtime, this is time-optimal. We present a new family of merging networks working in a completely different way than the previously known algorithms. They have a novel property of being periodic: this means that for some (small) constant k , each processing unit of the network performs the same operations at steps t and t+k (as long as t+k does not exceed the runtime). The only operations executed are compare—exchange operations, just like in the case of Batcher's networks. The architecture of the networks is very simple and easy to lay out. We show that even for period 3 there is a network in our family merging two n -element sorted sequences in time O(log n ). Since each network of period 2 requires steps to merge such sequences, 3 is the smallest period for which we may achieve a fast runtime. In order to improve constants standing in front of log n we increment the period and tune the construction using additional techniques. We achieve the runtime 9 . . . log_3 n 5.7 . . . log n for a network of period 4, and 2.25 . . . ((k+3)/(k-1+log 3))log n 2.25 . . . log n for a network of period k+3 , for . Due to the periodic design, our networks have small area complexity. For instance, if each processing unit requires O(1) area and a comparator uses a single wire of width O(1) connecting the processing elements, then our networks require area. This compares well with Batcher's networks that require area . Received February 1997, and in revised form September 1997, and in final form February 1998.  相似文献   

5.
This paper presents a new approach to construct a smalln-column 0, 1-matrix for two given integersn andk(k, such that everyk-column projection contains all 2 k possible row vectors, namely surjective on {0, 1} k . The number of the matrix's rows does not exceed . This approach has considerable advantage for smallk and practical sizes ofn. It can be applied to the test generation of VLSI circuits, the design of fault tolerant systems and other fields.  相似文献   

6.
We investigate the arithmetic formula complexity of the elementary symmetric polynomials Skn{S^k_n} . We show that every multilinear homogeneous formula computing Skn{S^k_n} has size at least kW(logk)n{k^{\Omega(\log k)}n} , and that product-depth d multilinear homogeneous formulas for Skn{S^k_n} have size at least 2W(k1/d)n{2^{\Omega(k^{1/d})}n} . Since Sn2n{S^{n}_{2n}} has a multilinear formula of size O(n 2), we obtain a superpolynomial separation between multilinear and multilinear homogeneous formulas. We also show that Skn{S^k_n} can be computed by homogeneous formulas of size kO(logk)n{k^{O(\log k)}n} , answering a question of Nisan and Wigderson. Finally, we present a superpolynomial separation between monotone and non-monotone formulas in the noncommutative setting, answering a question of Nisan.  相似文献   

7.
We introduce a new method for computing the geodesic Voronoi diagram of point sites in a simple polygon and other restricted polygonal domains. Our method combines a sweep of the polygonal domain with the merging step of a usual divide-and-conquer algorithm. The time complexity is O((n+k) log(n+k)) where n is the number of vertices and k is the number of points, improving upon previously known bounds. Space is O(n+k) . Other polygonal domains where our method is applicable include (among others) a polygonal domain of parallel disjoint line segments and a polygonal domain of rectangles in the L 1 metric. Received February 15, 1996; revised November 2, 1996.  相似文献   

8.
Two vertices of an undirected graph are called k -edge-connected if there exist k edge-disjoint paths between them (equivalently, they cannot be disconnected by the removal of less than k edges from the graph). Equivalence classes of this relation are called classes of k -edge-connectivity or k -edge-connected components. This paper describes graph structures relevant to classes of 4 -edge-connectivity and traces their transformations as new edges are inserted into the graph. Data structures and an algorithm to maintain these classes incrementally are given. Starting with the empty graph, any sequence of q Same-4-Class? queries and n Insert-Vertex and m Insert-Edge updates can be performed in O(q + m + n log n) total time. Each individual query requires O(1) time in the worst-case. In addition, an algorithm for maintaining the classes of k -edge-connectivity (k arbitrary) in a (k-1) -edge-connected graph is presented. Its complexity is O(q + m + n) , with O(M +k 2 n log (n/k)) preprocessing, where M is the number of edges initially in the graph and n is the number of its vertices. Received July 5, 1995; revised October 21, 1996.  相似文献   

9.
LetG be a graph ofn vertices that can be drawn in the plane by straight-line segments so that nok+1 of them are pairwise crossing. We show thatG has at mostc k nlog2k–2 n edges. This gives a partial answer to a dual version of a well-known problem of Avital-Hanani, Erdós, Kupitz, Perles, and others. We also construct two point sets {p 1,,p n }, {q 1,,q n } in the plane such that any piecewise linear one-to-one mappingfR 2R 2 withf(pi)=qi (1in) is composed of at least (n 2) linear pieces. It follows from a recent result of Souvaine and Wenger that this bound is asymptotically tight. Both proofs are based on a relation between the crossing number and the bisection width of a graph.The first author was supported by NSF Grant CCR-91-22103, PSC-CUNY Research Award 663472, and OTKA-4269. An extended abstract of this paper was presented at the 10th Annual ACM Symposium on Computational Geometry, Stony Brook, NY, 1994.  相似文献   

10.
11.
Summary We present an algorithm to merge priority queues organized as heaps. The worst case number of comparisons required to merge two heaps of sizes k and n is O(log(n)*log(k)). The algorithm requires O(k) +log(n)*log (k)) data movements if heaps are implemented using arrays and O(log(n)*log(k)) for a pointer-based implementation. Previous algorithms require either O(n+k) data movements and comparisons, or O(k*log(log(n+k))) comparisons and O(k*log(n+k)) data movements. The algorithm presented in this paper improves on the previous algorithms for the case when k>log(n).This work was done while the authors were at McGill University, Montréal, Canada  相似文献   

12.
Abstract. In this paper two problems on the class of k -trees, a subclass of the class of chordal graphs, are considered: the fast reordering problem and the isomorphism problem. An O(log 2 n) time parallel algorithm for the fast reordering problem is described that uses O(nk(n-k)/\kern -1ptlog n) processors on a CRCW PRAM proving membership in the class NC for fixed k . An O(nk(k+1)!) time sequential algorithm for the isomorphism problem is obtained representing an improvement over the O(n 2 k(k+1)!) algorithm of Sekharan (the second author) [10]. A parallel version of this sequential algorithm is presented that runs in O(log 2 n) time using O((nk((k+1)!+n-k))/log n) processors improving on a parallel algorithm of Sekharan for the isomorphism problem [10]. Both the sequential and parallel algorithms use a concept introduced in this paper called the kernel of a k -tree.  相似文献   

13.
We consider the problem of routing and sorting ond-dimensionaln×...× mesh connected computers. Each of the processing units initially holdsk packets. We present randomized algorithms that solve these problems with (1+o(1))·max{2·d·n,k·n/2} communication steps. On a torus these problems are solved twice as fast. Thus we match the bisection bound up to lower-order terms, for allk≥4·d. Earlier algorithms required some additional Θ(n) steps or more, and were more complicated. With 2·d·n extra steps our algorithm can also route in the cut-through routing model.  相似文献   

14.
K. H. Tsai  D. T. Lee 《Algorithmica》1997,18(2):198-216
Given a set ofn nonnegativeweighted circular arcs on a unit circle, and an integerk, thek Best Cust for Circular-Arcs problem, abbreviated as thek-BCCA problem, is to find a placement ofk points, calledcuts, on the circle such that the total weight of the arcs that contain at least one cut is maximized. We first solve a simpler version, thek Best Cuts for Intervals (k-BCI) problem, inO(kn+n logn) time andO(kn) space using dynamic programming. The algorithm is then extended to solve a variation, called thek-restricted BCI problem, and the space complexity of thek-BCI problem can be improved toO(n). Based on these results, we then show that thek-BCCA problem can be solved inO(I(k,n)+nlogn) time, whereI(k, n) is the time complexity of thek-BCI problem. As a by-product, thek Maximum Cliques Cover problem (k>1) for the circular-arc graphs can be solved inO(I(k,n)+nlogn) time. This work was supported in part by the National Science Foundation under Grants CCR-8901815, CCR-9309743, and INT-9207212, and by the Office of Naval Research under Grant No. N00014-93-1-0272.  相似文献   

15.
Karchmer, Raz, and Wigderson (1995) discuss the circuit depth complexity of n-bit Boolean functions constructed by composing up to d = log n/log log n levels of k = log n-bit Boolean functions. Any such function is in AC1 . They conjecture that circuit depth is additive under composition, which would imply that any (bounded fan-in) circuit for this problem requires depth. This would separate AC1 from NC1. They recommend using the communication game characterization of circuit depth. In order to develop techniques for using communication complexity to prove circuit depth lower bounds, they suggest an intermediate communication complexity problem which they call the Universal Composition Relation. We give an almost optimal lower bound of dkO(d 2(k log k)1/2) for this problem. In addition, we present a proof, directly in terms of communication complexity, that there is a function on k bits requiring circuit depth. Although this fact can be easily established using a counting argument, we hope that the ideas in our proof will be incorporated more easily into subsequent arguments which use communication complexity to prove circuit depth bounds. Received: July 30, 1999.  相似文献   

16.
In this paper we present an n^ O(k 1-1/d ) -time algorithm for solving the k -center problem in \reals d , under L fty - and L 2 -metrics. The algorithm extends to other metrics, and to the discrete k -center problem. We also describe a simple (1+ɛ) -approximation algorithm for the k -center problem, with running time O(nlog k) + (k/ɛ)^ O(k 1-1/d ) . Finally, we present an n^ O(k 1-1/d ) -time algorithm for solving the L -capacitated k -center problem, provided that L=Ω(n/k 1-1/d ) or L=O(1) . Received July 25, 2000; revised April 6, 2001.  相似文献   

17.
This paper studies vehicle routing problems on asymmetric metrics. Our starting point is the directed k-TSP problem: given an asymmetric metric (V,d), a root rV and a target k≤|V|, compute the minimum length tour that contains r and at least k other vertices. We present a polynomial time O(\fraclog2 nloglogn·logk)O(\frac{\log^{2} n}{\log\log n}\cdot\log k)-approximation algorithm for this problem. We use this algorithm for directed k-TSP to obtain an O(\fraclog2 nloglogn)O(\frac{\log^{2} n}{\log\log n})-approximation algorithm for the directed orienteering problem. This answers positively, the question of poly-logarithmic approximability of directed orienteering, an open problem from Blum et al. (SIAM J. Comput. 37(2):653–670, 2007). The previously best known results were quasi-polynomial time algorithms with approximation guarantees of O(log 2 k) for directed k-TSP, and O(log n) for directed orienteering (Chekuri and Pal in IEEE Symposium on Foundations in Computer Science, pp. 245–253, 2005). Using the algorithm for directed orienteering within the framework of Blum et al. (SIAM J. Comput. 37(2):653–670, 2007) and Bansal et al. (ACM Symposium on Theory of Computing, pp. 166–174, 2004), we also obtain poly-logarithmic approximation algorithms for the directed versions of discounted-reward TSP and vehicle routing problem with time-windows.  相似文献   

18.
N. Gupta  S. Sen 《Algorithmica》2001,31(2):179-207
We describe an efficient parallel algorithm for hidden-surface removal for terrain maps. The algorithm runs in O(log 4 n) steps on the CREW PRAM model with a work bound of O((n+k) \polylog ( n)) where n and k are the input and output sizes, respectively. In order to achieve the work bound we use a number of techniques, among which our use of persistent data structures is somewhat novel in the context of parallel algorithms. Received July 29, 1998; revised October 5, 1999.  相似文献   

19.
20.
We consider the problem of routing packets on an MIMD mesh-connected array of processors augmented with row and column buses. We give lower bounds and randomized algorithms for the problem of routing k-permutations (where each processor is the source and destination of exactly k packets) on a d-dimensional mesh with buses, which we call the (k,d)-routing problem. We give a general class of ``hard' permutations which we use to prove lower bounds for the (k,d)-routing problem, for all k,d≥ 1. For the (1,1)- and (1,2)-routing problems the worst-case permutations from this class are identical to ones published by other authors, as are the resulting lower bounds. However, we further show that the (1,d)-routing problem requires 0.72 ... n steps for d=3, 0.76 ... n steps for d=4, and slightly more than steps for all d≥ 5. We also obtain new lower bounds for the (k,d)-routing problem for k,d > 1, which improve on the bisection lower bound in some cases. These lower bounds hold for off-line routing as well. We develop efficient algorithms for the (k,1)-routing problem and for the problem of routing k-randomizations (where each processor has k packets initially and each packet is routed to a random destination) on the one-dimensional mesh and use them in a general (k,d)-routing algorithm which improves considerably on previous results. In particular, the routing time for the (1,d)-routing problem is bounded by steps with high probability (whp), whenever for some constant ε > 0, and the routing time for the (k,d)-routing problem is steps whp whenever for some constant ε > 0 and k≥ 3.6 ... d, matching the bisection lower bound. We then present a simple algorithm for the (2,2)-routing problem running in 1.39 ... n+o(n) steps whp. Finally, for the important special case of routing permutations on two-dimensional meshes with buses, the (1,2)-routing problem, we give a more sophisticated algorithm that runs in 0.78 ... n+o(n) steps whp. Received May 18, 1994; revised June 23, 1995.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号