首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temperature-dependent structural changes in hydrogen bonds (H-bonds) in microcrystalline cellulose (MCC) were investigated by infrared (IR) and near-infrared (NIR) spectroscopy. The O-H stretching fundamentals and their first overtone bands were employed to explore the structural changes. In order to analyze the overlapping OH bands due to various H-bonds, perturbation-correlation moving-window two-dimensional (PCMW2D) correlation spectroscopy was applied to the IR and NIR data. Typical spectral variation temperatures were visualized by the PCMW2D correlation analysis. Structural changes in the strong H-bonds in MCC gradually occur in the temperature region of 25-130 degrees C, and they become greater above 130 degrees C. Both OH groups with H-bonds of intermediate strength and very weak H-bonds arise from the structural change of strong H-bonds in the temperature region of 40-90 degrees C, whereas the appearance of the latter OH groups with very weak H-bonds gradually becomes dominant above 90 degrees C. It is revealed from the present study that the glass transition at 184 degrees C induces the changes in the H-bonds in the Ibeta and the O3-H3...O5 intrachain H-bonds. Band assignments for the O-H stretching first overtone vibration region are proposed based on the results of the PCMW2D correlation analyses.  相似文献   

2.
Given their ephemeral nature, the preservation of historic silks can be problematic. Rapid, on-site condition monitoring would offer significant benefits to conservators and museum curators concerned with continued access to collections. In this paper, near-infrared spectroscopy (NIR) is investigated as a noninvasive approach to the characterization of silk fabrics and particularly for determining the moisture content of silks as a potential age-related marker. Bands within the NIR spectrum of silk are assigned to contributions from water and the silk fibroin polymer. The water bands may be deconvolved to show separate contributions from bound and structural water. When silk is exposed to deuterium oxide, the water OH NIR bands are rapidly lost. The accompanying changes in the amide-related NIR absorptions reflect differential accessibility of regions within the semi-crystalline fibroin aggregate. NIR spectra were recorded while silk was maintained at a range of relative humidity; complementary gravimetry provided absolute reference data for moisture sorption. A single spectral parameter, the intensity of the water combination band, is sufficient to indicate the relative moisture content of silk and allows distinction of unaged and heat, light, and humidity aged silks. The results confirm that NIR has significant potential for on-site studies at collections in support of the preservation and access of our silk heritage.  相似文献   

3.
Analysis of aluminum hydroxide based vaccines is difficult after antigen adsorption. Adsorbed protein is often assessed by measuring residual unadsorbed protein for quality control. A new method for the direct determination of adsorbed protein concentration in suspension using near-infrared (NIR) transmittance spectroscopy is proposed here. A simple adsorption system using albumin from bovine serum (BSA) and aluminum hydroxide as a model system is employed. The results show that the NIR absorbance at 700-1300 nm is correlated to the adsorbed BSA concentration, measured by the ultraviolet (UV) method, using the partial least square regression (PLSR) method to construct a calibration model. The linear concentration range of adsorbed BSA is from 0 to 1.75 mg/mL by using 10 mm path length cuvettes. The influence of the sedimentation in suspension, different buffers, and different aluminum hydroxide batches was investigated in this study. It shows that the batch variation is the main influence factor of this method, while the buffer variation has no influence. However, the pretreatment of spectral data by subtracting spectra of BSA blank control (aluminum hydroxide without BSA) can significantly reduce the batch influence, and the NIR predicted results show good agreement with the reference values. The NIR method might be the only direct method for the determination of adsorbed protein concentration in suspension so far. It is a nondestructive method, and it has great advantage for use in vaccine production as a method for quality control and quality assurance.  相似文献   

4.
The present study has aimed at providing new insight into short-wave near-infrared (NIR) spectroscopy of biological fluids. To do that, we analyzed NIR spectra in the 800-1,100-nm region of 100 raw milk samples. The contents of fat, proteins, and lactose were predicted by partial least-squares (PLS) regression and band assignment in that region was investigated based upon PLS loading plots and regression coefficients. For the fat prediction, the whole set of samples was divided into two groups and the fat concentration was predicted for the samples that were not included in the calibration procedures. The correlation coefficient and root-mean-square error of prediction (RM-SEP) in the better prediction run were found to be 0.996 and 0.087 wt %, respectively. Assignment of the bands due to fat was proposed based upon the regression coefficients and PLS loading weights, and the importance of a pretreatment in the prediction was discussed. Milk proteins also yielded sufficient correlation coefficients and RMSEP although the contributions of protein bands to the milk spectra were much smaller than those of the fat bands. The sizes of the calibration models for protein prediction were considered. This is the first time that good correlation coefficients and RMSEP of proteins have ever been obtained for the short-wave NIR spectra of milk. For lactose, noisy regression coefficients with limited prediction ability were obtained. Band assignment was investigated also for bands due to proteins and lactose. We propose the detailed band assignment for the short-wave NIR region useful for various biological fluids. The results presented here demonstrate that the short-wave NIR region is promising for the fast and reliable determination of major components in biological and biomedical fluids.  相似文献   

5.
Nanosuspension technology is an attractive approach for the formulation and solubility enhancement of poorly water-soluble drug compounds. The technology requires adequate excipients for stabilizing the suspensions during nanogrinding and storage. This study aimed at establishing a near-infrared (NIR) method for assaying simultaneously the two nanoparticle stabilizers, sodium dodecyl sulphate (SDS) and hydroxypropylcellulose (HPC), in miconazole nanosuspensions. Second derivative of NIR signals was used to establish calibration curves in concentration ranges of interest of SDS (0.03-0.3%) and HPC (0.75-7.5%). The suitability and applicability of the NIR method was verified by evaluating the linearity, accuracy, precision, and specificity of the obtained data. The method was then used to quantify indirectly the amount of SDS and HPC adsorbed onto miconazole nanoparticles. Within the concentration range of interest, SDS adsorption increased up to 122 μg/m(2) (4.2?×?10(-7) mol/m(2)) with increasing SDS concentration, and HPC adsorption was in the range of 800-1000 μg/m(2) (21-27?×?10(-7) mol/m(2)) for nanosuspensions containing nominally 5% HPC and 12.5% or 20% miconazole. Interestingly, some of the adsorbed HPC was displaced upon increase of SDS concentration and adsorption. The data were also confirmed by surface tension measurements of aqueous solutions of SDS and HPC and nanosuspension supernatants. The availability of a fast and nondestructive method for quantifying simultaneously the adsorption of two stabilizers onto nanoground particles may not only speed up nanosuspension development, but also provide insight into the mechanisms of nanoparticle stabilization regarding competitive adsorption and electrostatic versus steric stabilization.  相似文献   

6.
In this paper we propose a rapid and highly selective far-ultraviolet (FUV) spectroscopic method for the simultaneous determination of peracetic acid (PAA), hydrogen peroxide, and acetic acid (AA). For this purpose we developed a novel FUV spectrometer that enables us to measure the spectra down to 180 nm. Direct determination of PAA, H(2)O(2), and AA, the three main species in disinfectant solutions, was carried out by using their absorption bands in the 180-220-nm region. The proposed method does not require any reagents or catalysts, a calibration standard, and a complicated procedure for the analysis. The only preparation procedure requested is a dilution of H(2)O(2) with pure water to a concentration range lower than 0.2 wt % in the sample solutions. Usually, the required concentration range can be obtained by the 10 times volume dilution of the actual disinfectant solutions. As the measured sample does not leave any impurity for the disinfection, it can be reused completely by using a circulation system. The detection limit for PAA of the new FUV spectrometer was evaluated to be 0.002 wt %, and the dynamic ranges of the measured concentrations were from 0 to 0.05 wt %, from 0 to 0.2 wt %, and from 0 to 0.2 wt % for PAA, H(2)O(2), and AA, respectively. The response time for the simultaneous determination of the three species is 30 s, and the analysis is applicable even to the flowing samples. This method may become a novel approach for the continuous monitoring of PAA in disinfectant solutions on the process of sterilization.  相似文献   

7.
On the basis of absorption measurements in the near-infrared (NIR) spectral range, a new method for the quantification of the ethanol content of beer is presented. Instead of the multivariate calibration models most commonly employed in NIR spectroscopic works, we use interpretive difference spectroscopy: Two wavelengths are selected according to the assignment of the absorption bands of the main substances of content of beer in the NIR region, and the difference between the absorbances at these wavelengths is used for ethanol quantification. Absorption spectra of the dominating beer ingredients are discussed and the calibration procedure with ethanol/water mixtures is shown. Robustness against the carbohydrate content of beer samples was demonstrated by analyzing solutions of ethanol and maltose in water. Validation of the method was performed with various beer samples with an ethanol concentration range between 0.5 and 7.7 vol %. The pertinent advantage of the procedure developed in this work is the indication that the results are independent from seasonal variations of the ingredients, which is of high interest for products with natural ingredients such as beer.  相似文献   

8.
X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectroscopy (ToF–SIMS), two surface-sensitive spectroscopic methods, are commonly used to characterize adsorbed protein layers. Principal component analysis (PCA) is a statistical method which aims at reducing the number of variables in complex sets of data while retaining most of the original information. The aim of this paper is to review work carried out in our group regarding the use of PCA with a view to facilitate and deepen the interpretation of ToF–SIMS or XPS spectra acquired on adsorbed protein layers. ToF–SIMS data acquired on polycarbonate membranes after albumin and, or insulin adsorption were treated with PCA. The results reveal the preferential exposure of particular amino acids at the outermost surface depending on the adsorption conditions (nature of the substrate and of the proteins involved, concentration in solution), giving insight into the adsorption mechanisms. PCA was applied on XPS data collected on three different substrates after albumin or fibrinogen adsorption, followed in some cases by a cleaning procedure with oxidizing agents. The results allow samples to be classified according to the nature of the substrate and to the adsorbed amount and, or the level of surface coverage by the protein. Chemical shifts of particular interest are also identified, which may facilitate further peak decomposition. It is useful to recall that the outcome of PCA strongly depends on data selection and normalisation.  相似文献   

9.
Nanosuspension technology is an attractive approach for the formulation and solubility enhancement of poorly water-soluble drug compounds. The technology requires adequate excipients for stabilizing the suspensions during nanogrinding and storage. This study aimed at establishing a near-infrared (NIR) method for assaying simultaneously the two nanoparticle stabilizers, sodium dodecyl sulphate (SDS) and hydroxypropylcellulose (HPC), in miconazole nanosuspensions. Second derivative of NIR signals was used to establish calibration curves in concentration ranges of interest of SDS (0.03–0.3%) and HPC (0.75–7.5%). The suitability and applicability of the NIR method was verified by evaluating the linearity, accuracy, precision, and specificity of the obtained data. The method was then used to quantify indirectly the amount of SDS and HPC adsorbed onto miconazole nanoparticles. Within the concentration range of interest, SDS adsorption increased up to 122 µg/m2 (4.2?×?10?7 mol/m2) with increasing SDS concentration, and HPC adsorption was in the range of 800–1000 µg/m2 (21–27?×?10?7 mol/m2) for nanosuspensions containing nominally 5% HPC and 12.5% or 20% miconazole. Interestingly, some of the adsorbed HPC was displaced upon increase of SDS concentration and adsorption. The data were also confirmed by surface tension measurements of aqueous solutions of SDS and HPC and nanosuspension supernatants. The availability of a fast and nondestructive method for quantifying simultaneously the adsorption of two stabilizers onto nanoground particles may not only speed up nanosuspension development, but also provide insight into the mechanisms of nanoparticle stabilization regarding competitive adsorption and electrostatic versus steric stabilization.  相似文献   

10.
Diffuse reflectance (DF) spectra in the 1250-2500 nm region were measured in vivo for the skin of the forehead, cheek, jaw, elbow, volar forearm, palm, knee, and heel of seven healthy volunteers, using a Fourier transform near-infrared (FT-NIR) spectrophotometer with a fiber-optic probe. Apparent regional differences of water content in the skin, as estimated from the diffuse reflectance NIR spectra, are discussed in relation to the influence of measurement depth. The NIR spectra were collected with or without a 300 microm gap between the fiber-optic probe and the skin surface. For comparison, in vitro NIR spectra of stratum corneum sheets equilibrated at 41, 50, 63, and 81% relative humidity, at 25 degrees C, were also obtained. There was a difference in the ratio of the two water bands centered near 1450 nm and 1900 nm between the contact and non-contact measurements. In addition, regional differences of water content calculated from the peak height of the 1900 nm water band, which was normalized to the peak height of the 2175 nm amide band, were compared. The results of Monte Carlo simulation indicated that the apparent regional differences arise at least in part from differences in the measurement depth due to differences in specular reflection at the skin surface and in the thickness of the stratum corneum.  相似文献   

11.
The potential of near-infrared (NIR) spectroscopy to measure the main inorganic components of seawater as salt-manufacturing materials was investigated. A total of 72 seawater samples collected from six locations was used, and spectra (1100-1800 nm) were acquired by a NIR spectrophotometer with a 1-mm path length. Principal component analysis (PCA), canonical correlation analysis (CCA), and partial least-squares (PLS) regression were performed based on the reference inorganic components. As a result, the principal component analysis and canonical correlation analysis showed that the near-infrared spectra could be related to the inorganic components of seawater. The partial least-squares regression analysis showed that the inorganic components (ion concentration of Cl, Na+, K+, SO4(2-), and Ca2+) could be predicted with good accuracy using NIR spectra and their second derivatives. For Cl ion and K+ ion concentrations, the accuracy was high.  相似文献   

12.
Two-dimensional (2D) correlation analysis was applied to characterize the attenuated total reflection (ATR) spectral intensity fluctuations of native cotton fibers with various water contents. Prior to 2D analysis, the spectra were leveled to zero at the peak intensity of 1800 cm(-1) and then were normalized at the peak intensity of 660 cm(-1) to subjectively correct the changes resulting from water diffusion in fibers and resultant density dilution. Next, a new spectral set was subjected to principal component analysis (PCA) and two clusters of hydrated (≥13.3%) and dehydrated (<13.3%) fibers were obtained. Synchronous and asynchronous 2D correlation spectra from individual ATR spectral sets enhanced spectral resolution and provided insights about water-content-dependent intensity variations not readily accessible from one-dimensional ATR spectra. The 2D results revealed remarkable differences corresponding to water loss between the hydrated and dehydrated fibers. Of interest were that: (1) the intensity of the 1640 cm(-1) water band remains in a steady state for hydrated fibers but decreases for dehydrated fibers; (2) during the desorption process of adsorbed water, small and water-soluble carbonyl species (i.e., esters, acids, carboxylates, and proteins) begin to accumulate on the cotton surface, resulting in possible changes in the coloration and surface chemistry of native cotton fibers that were rained on prior to harvesting; (3) intensities of bands in the 1200 to 950 cm(-1) region exhibit a more apparent intensity increase than those in the 1500 to 1200 cm(-1) region, indicating the sensitivity of the 1200 to 950 cm(-1) infrared (IR) region to intra- and inter-molecular hydrogen bonding in fiber celluloses; and (4) the 750 cm(-1) band, ascribed to the unstable I(α) phase in amorphous regions, might originate from the cellulose-water complex through hydrogen bonding.  相似文献   

13.
Noninvasive assessment of engineered cartilage properties would enable better control of the developing tissue towards the desired structural and compositional endpoints through optimization of the biochemical environment in real time. The objective of this study is to assess the matrix constituents of cartilage using near-infrared spectroscopy (NIRS), a technique that permits full-depth assessment of developing engineered tissue constructs. Mid-infrared (mid-IR) and NIR data were acquired from full-thickness cartilage constructs that were grown up to 4 weeks with and without mechanical stimulation. Correlations were assessed between established mid-IR peak areas that reflect the relative amount of collagen (amide I, amide II, and 1338 cm(-1)) and proteoglycan (PG), (850 cm(-1)), and the integrated area of the NIR water absorbance at 5190 cm(-1). This analysis was performed to evaluate whether simple assessment of the NIR water absorbance could yield information about matrix development. It was found that an increase in the mid-IR PG absorbance at 850 cm(-1) correlated with the area of the NIR water peak (Spearman's rho = 0.95, p < 0.0001). In the second analysis, a partial least squares method (PLS1) was used to assess whether an extended NIR spectral range (5400-3800 cm(-1)) could be utilized to predict collagen and proteoglycan content of the constructs based on mid-IR absorbances. A subset of spectra was randomly selected as an independent prediction set in this analysis. Average of the normalized root mean square errors of prediction of first-derivative NIR spectral models were 7% for 850 cm(-1) (PG), 11% for 1338 cm(-1) (collagen), 8% for amide II (collagen), and 8% for amide I (collagen). These results demonstrate the ability of NIRS to monitor macromolecular content of cartilage constructs and is the first step towards employing NIR to assess engineered cartilage in situ.  相似文献   

14.
Organic field‐effect transistors and near‐infrared (NIR) organic phototransistors (OPTs) have attracted world's attention in many fields in the past decades. In general, the sensitivity, distinguishing the signal from noise, is the key parameter to evaluate the performance of NIR OPTs, which is decided by responsivity and dark current. 2D single crystal films of organic semiconductors (2DCOS) are promising functional materials due to their long‐range order in spite of only few molecular layers. Herein, for the first time, air‐stable 2DCOS of n‐type organic semiconductors (a furan‐thiophene quinoidal compound, TFT‐CN) with strong absorbance around 830 nm, by the facile drop‐casting method on the surface of water are successfully prepared. Almost millimeter‐sized TFT‐CN 2DCOS are obtained and their thickness is below 5 nm. A competitive field‐effect electron mobility (1.36 cm2 V?1 s?1) and high on/off ratio (up to 108) are obtained in air. Impressively, the ultrasensitive NIR phototransistors operating at the off‐state exhibit a very low dark current of ≈0.3 pA and an ultrahigh detectivity (D*) exceeding 6 × 1014 Jones because the devices can operate in full depletion at the off‐state, superior to the majority of the reported organic‐based NIR phototransistors.  相似文献   

15.
Fluoro substituted hydroxyapatite (FHAp) samples were prepared by a cyclic pH method. Both calcined and uncalcined samples were subjected to elemental analysis (F, Ca, P) and X-ray diffraction (XRD) analysis to verify composition and phase purity. Good correlation between a-axis parameters and fluoride ion content was found for calcined samples, however, for uncalcined samples the fluoride ion content was higher than estimated from the a-axis values. Fourier transform infra red (FT-IR) spectroscopy analysis of the calcined samples showed OH band shifts and splitting in accordance with F-HO interactions affecting the OH vibration. We conclude that the OH libration (620–780 cm-1 range) is more suited for estimation of fluoride ion content than the OH stretching. In contrast, uncalcined samples all displayed FT-IR spectra similar to that of hydroxyapatite (HAp) despite the presence of fluoride ions (18–73%). FT-IR emission spectroscopy was used to probe the changes occurring in the FT-IR spectra of HAp and FHAp samples upon heating. Interpretation of the spectral changes occurring during heating to 1,000 °C and subsequent cooling is given. Room temperature spectra of samples heated to various temperatures was used to determine the temperature necessary to produce FT-IR spectra displaying the expected OH bands. A model accounting for the combined observations is proposed.  相似文献   

16.
Near-infrared (NIR) spectra of n-, sec-, and tert-butanol in CCl4 were measured over a temperature range of 10–60°C. The spectra obtained were analyzed by both spectroscopic analytical methods such as calculations of the difference spectra and the second derivatives, and chemometrics, namely partial least squares (PLS) regression. The present study aims at comparing the spectroscopic analytical methods with chemometrics in the analysis of NIR spectra of n-, sec-, and tert-butanols in CCl4. The three kinds of alcohol showed an intense band due to the first overtone of the OH stretching mode in the 7120–7030 cm−1 (1404–1422 nm) region. The calculations of the difference spectra and the second derivatives revealed that the above bands of n- and sec-butanol consist of three and four component bands, respectively, due to the rotational isomerism of the monomer, the OH group weakly hydrogen-bonded with CCl4, and the terminal free OH groups of the self-associated species. For tert-butanol, which does not have the rotational isomerism, the corresponding band splits into only two components. Temperature of the alcohols was predicted by use of PLS regression. The regression coefficients for the models predicting the temperature of the alcohols were almost identical with the difference spectra of the alcohols between 10 and 60°C. Both the regression coefficients and the difference spectra reflect strongly the changes in the hydrogen bonds of the alcohols.  相似文献   

17.
Near-infrared (NIR) spectroscopy is a well-established technique for solid-state analysis, providing fast, noninvasive measurements. The use of NIR spectroscopy for polymorph screening and the associated advantages have recently been demonstrated. The objective of this work was to evaluate the analytical potential of NIR spectroscopy for cocrystal screening using Raman spectroscopy as a comparative method. Indomethacin was used as the parent molecule, while saccharin and l-aspartic acid were chosen as guest molecules. Molar ratios of 1:1 for each system were subjected to two types of preparative methods. In the case of saccharin, liquid-assisted cogrinding as well as cocrystallization from solution resulted in a stable 1:1 cocrystalline phase termed IND-SAC cocrystal. For l-aspartic acid, the solution-based method resulted in a polymorphic transition of indomethacin into the metastable alpha form retained in a physical mixture with the guest molecule, while liquid-assisted cogrinding did not induce any changes in the crystal lattice. The good chemical peak selectivity of Raman spectroscopy allowed a straightforward interpretation of sample data by analyzing peak positions and comparing to those of pure references. In addition, Raman spectroscopy provided additional information on the crystal structure of the IND-SAC cocrystal. The broad spectral line shapes of NIR spectra make visual interpretation of the spectra difficult, and consequently, multivariate modeling by principal component analysis (PCA) was applied. Successful use of NIR/PCA was possible only through the inclusion of a set of reference mixtures of parent and guest molecules representing possible solid-state outcomes from the cocrystal screening. The practical hurdle related to the need for reference mixtures seems to restrict the applicability of NIR spectroscopy in cocrystal screening.  相似文献   

18.
Characterization of soils using photoacoustic mid-infrared spectroscopy   总被引:2,自引:0,他引:2  
This study investigates the use of photoacoustic spectroscopy (PAS) for rapid soil analysis. Photoacoustic spectroscopy requires very minimal sample preparation (air-drying), which is a major advantage compared to the more traditional transmittance technique, which requires time-consuming preparation of pellets. The amount of information contained in the PAS spectra appears to be similar to that contained in transmittance spectra, and the PAS spectra exhibit a large number of bands that can be associated with various soil constituents such as quartz, calcium carbonate, and various types of clay. Comparison with attenuated total reflection (ATR) spectra of saturated soil pastes shows that the PAS spectra provide much more information than the ATR spectra due to the strong water bands present in the latter. PAS quantitative analysis of clay, calcium carbonate, and organic matter is presented, with respective determination errors of approximately 12% clay, approximately 5% CaCO(3), and approximately 0.2% organic matter.  相似文献   

19.
We developed a method for the optimization of dissolution properties of solid oral dosage forms manufacturing using high shear wet granulation (HSWG) by using near-infrared spectroscopy (NIRS) with chemometrics in small-scale experiments. The changes in rheology and NIR spectra of the granules were monitored to verify the granulation mechanism and determine the suitable water amount for model formulation during the HSWG. Tablets were manufactured by altering the added water amount to investigate the impact of the granulation mechanism on drug product qualities. Model formulation granules were prepared with 10–20% w/w water in a funicular state, corresponding to the plateau region in score plots obtained by principal component analysis (PCA). The dissolution rate of model formulation tablets manufactured with more than 20% w/w of water was significantly delayed while tablets manufactured with 15% w/w water showed 100% dissolution at 15?min. NIRS and PCA are applicable to the optimization of dissolution properties via the process understanding of HSWG at the early formulation development stage and could facilitate drug development.  相似文献   

20.
Background: Near-infrared (NIR) spectroscopy has gained wide acceptance in the pharmaceutical industry as a rapid and non destructive method for drug identification and the determination of the drug content of preparations. Aim: The crystallinity of cephalexin (CEX) in microcrystalline cellulose (MCC) was determined using a nondestructive NIR reflectance spectroscopic technique. The molecular interaction of a ground amorphous solid of CEX was investigated by the method. Method: Six kinds of standard material with various degrees of crystallinity were prepared by the physical mixing of crystalline, amorphous CEX, and MCC. X-ray powder diffraction profiles and NIR spectra were recorded for standard samples. A chemometric analysis of the NIR spectral data sets was conducted using principal component regression (PCR). Results: The correlation between the actual crystallinity of CEX and that predicted using the conventional X-ray diffraction method showed a straight line with a slope of 1.000, an intercept of ?2.071 × 10?5 and a correlation coefficient of determination (R2) of 0.974. The NIR spectrum of amorphous CEX showed significantly different peaks at 1176 and 1206 nm because of the CH3 group from those of CEX. PCR was performed on various kinds of pretransformed NIR spectral data sets of standard samples of CEX. To minimize the SE of cross-validation (SECV), the spectral data sets were subjected to the leave-one-out method. The second derivative treatment in the range of 1176–1206 nm yielded the lowest SECV values. Based on a two-component model, a plot of the calibration data between the actual crystallinity of CEX and that predicted by the NIR method was obtained. The plot showed a straight line (Y = 0.995X + 0.117 and R2 = 0.994; n = 18). The mean bias for the NIR and X-ray powder diffraction methods was calculated to be 1.52% and 2.26%, and mean accuracy was 3.06% and 7.14%, respectively. Conclusion: NIR spectral changes of crystalline CEX during grinding suggested that the intermolecular hydrogen bonds between the amino and carboxyl groups are destroyed and the binding of methyl groups is heightened by the resonance effect of carboxyl groups, and the crystals are transformed into amorphous CEX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号