首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
针对传统的血流血管壁耦合难以兼顾计算效率和视觉真实感的问题,提出了一种基于周期性校正神经网络(Periodic-corrected Network,PcNet)的血流血管壁耦合数据驱动仿真方法。设计基于平滑粒子流体动力学(SPH)的血流粒子状态特征向量,对邻域血流粒子和血管壁代理粒子的混合贡献进行建模。提出一种半监督的神经网络--改进的周期性校正神经网络,预测每个粒子在下一帧的加速度。实验结果表明该仿真方法实现了快速、稳定、逼真的血流血管壁耦合。  相似文献   

2.
In this paper, we present a novel method to couple Smoothed Particle Hydrodynamics (SPH) and nonlinear FEM to animate the interaction of fluids and deformable solids in real time. To accurately model the coupling, we generate proxy particles over the boundary of deformable solids to facilitate the interaction with fluid particles, and develop an efficient method to distribute the coupling forces of proxy particles to FEM nodal points. Specifically, we employ the Total Lagrangian Explicit Dynamics (TLED) finite element algorithm for nonlinear FEM because of many of its attractive properties such as supporting massive parallelism, avoiding dynamic update of stiffness matrix computation, and efficient solver. Based on a predictor‐corrector scheme for both velocity and position, different normal and tangential conditions can be realized even for shell‐like thin solids. Our coupling method is entirely implemented on modern GPUs using CUDA. We demonstrate the advantage of our two‐way coupling method in computer animation via various virtual scenarios.  相似文献   

3.
A Lagrangian particle model for multiphase multicomponent fluid flow, based on smoothed particle hydrodynamics (SPH), was developed and used to simulate the flow of an emulsion consisting of bubbles of a non-wetting liquid surrounded by a wetting liquid. In SPH simulations, fluids are represented by sets of particles that are used as discretization points to solve the Navier-Stokes fluid dynamics equations. In the multiphase multicomponent SPH model, a modified van der Waals equation of state is used to close the system of flow equations. The combination of the momentum conservation equation with the van der Waals equation of state results in a particle equation of motion in which the total force acting on each particle consists of many-body repulsive and viscous forces, two-body (particle-particle) attractive forces, and body forces such as gravitational forces. Similar to molecular dynamics, for a given fluid component the combination of repulsive and attractive forces causes phase separation. The surface tension at liquid-liquid interfaces is imposed through component dependent attractive forces. The wetting behavior of the fluids is controlled by phase dependent attractive interactions between the fluid particles and stationary particles that represent the solid phase. The dynamics of fluids away from the interface is governed by purely hydrodynamic forces. Comparison with analytical solutions for static conditions and relatively simple flows demonstrates the accuracy of the SPH model.  相似文献   

4.
This paper presents a novel realistic and stable turbulence synthesis method to simulate the turbulent details generated behind objects in smoothed particle hydrodynamics (SPH) fluids. Firstly, by approximating the boundary layer theory on the fly in SPH fluids, we propose a vorticity production model to identify which fluid particles shed from object surfaces and which are seeded as vortex particles. Then, we employ an SPH‐like summation interpolant formulation of the Biot–Savart law to calculate the fluctuating velocities stemming from the generated vorticity field. Finally, the stable evolution of the vorticity field is achieved by combining an implicit vorticity diffusion technique and an artificial dissipation term. Moreover, in order to efficiently catch turbulent details for rendering, we propose an octree‐based adaptive surface reconstruction method for particle‐based fluids. The experiment results demonstrate that our turbulence synthesis method provides an effect way to model the obstacle‐induced turbulent details in SPH fluids and can be easily added to existing particle‐based fluid–solid coupling pipelines. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Smoothed particle hydrodynamics (SPH)‐based fluid control is often involved in fluid animation. Because most of the existing SPH fluid control methods employ the strategy of control force to control fluid particles, the artificial viscosity introduced by control force would lead to the loss of fine‐scale details. Although the introduction of the low‐pass filter can add details, it may easily destroy the target shape. To remedy the previous problems, we sample the control particles with curvature information to represent the shape complexity. Because of the shape's complexity, we suppress the generation of turbulence in the high‐curvature areas and promote turbulence in the low‐curvature regions. Our self‐adaptive way to randomly generate turbulence can effectively prevent the lack of fluid dynamics caused by the artificial viscosity. Our new method can improve the visual quality of the fluid animation, and the shape control result is consistent to the target shape. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
基于传统光滑粒子流体动力学(SPH)方法的边界力法、虚粒子法或耦合力法处理固体入水时,流体与固体交互界面的粒子密度不连续、压力不稳定、固体边界处会发生部分流体粒子穿透或分离等现象,而流体表面因为受到力的作用,表面破碎后,液面较粗糙.针对上述问题,结合边界力和虚粒子的优点,对耦合力法进行改进,处理运动固体边界,阻止流体粒...  相似文献   

7.
We present a grid‐based fluid solver for simulating viscous materials and their interactions with solid objects. Our method formulates the implicit viscosity integration as a minimization problem with consistently estimated volume fractions to account for the sub‐grid details of free surfaces and solid boundaries. To handle the interplay between fluids and solid objects with viscosity forces, we also formulate the two‐way fluid‐solid coupling as a unified minimization problem based on the variational principle, which naturally enforces the boundary conditions. Our formulation leads to a symmetric positive definite linear system with a sparse matrix regardless of the monolithically coupled solid objects. Additionally, we present a position‐correction method using density constraints to enforce the uniform distributions of fluid particles and thus prevent the loss of fluid volumes. We demonstrate the effectiveness of our method in a wide range of viscous fluid scenarios.  相似文献   

8.
In the previous works, the real‐time fluid‐character animation could hardly be achieved because of the intensive processing demand on the character's movement and fluid simulation. This paper presents an effective approach to the real‐time generation of the fluid flow driven by the motion of a character in full 3D space, based on smoothed‐particle hydrodynamics method. The novel method of conducting and constraining the fluid particles by the geometric properties of the character motion trajectory is introduced. Furthermore, the optimized algorithms of particle searching and rendering are proposed, by taking advantage of the graphics processing unit parallelization. Consequently, both simulation and rendering of the 3D liquid effects with realistic character interactions can be implemented by our framework and performed in real‐time on a conventional PC. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Recent advances in physically‐based simulations have made it possible to generate realistic animations. However, in the case of solid‐fluid coupling, wetting effects have rarely been noticed despite their visual importance especially in interactions between fluids and granular materials. This paper presents a simple particle‐based method to model the physical mechanism of wetness propagating through granular materials; Fluid particles are absorbed in the spaces between the granular particles and these wetted granular particles then stick together due to liquid bridges that are caused by surface tension and which will subsequently disappear when over‐wetting occurs. Our method can handle these phenomena by introducing a wetness value for each granular particle and by integrating those aspects of behavior that are dependent on wetness into the simulation framework. Using this method, a GPU‐based simulator can achieve highly dynamic animations that include wetting effects in real time.  相似文献   

10.
Simulating nearly contacting solid particles in suspension is a challenging task due to the diverging behavior of short-range lubrication forces, which pose a serious time-step limitation for explicit integration schemes. This general difficulty limits severely the total duration of simulations of concentrated suspensions. Inspired by the ideas developed in [S. Litvinov, M. Ellero, X.Y. Hu, N.A. Adams, J. Comput. Phys. 229 (2010) 5457–5464] for the simulation of highly dissipative fluids, we propose in this work a splitting integration scheme for the direct simulation of solid particles suspended in a Newtonian liquid. The scheme separates the contributions of different forces acting on the solid particles. In particular, intermediate- and long-range multi-body hydrodynamic forces, which are computed from the discretization of the Navier–Stokes equations using the smoothed particle hydrodynamics (SPH) method, are taken into account using an explicit integration; for short-range lubrication forces, velocities of pairwise interacting solid particles are updated implicitly by sweeping over all the neighboring pairs iteratively, until convergence in the solution is obtained. By using the splitting integration, simulations can be run stably and efficiently up to very large solid particle concentrations. Moreover, the proposed scheme is not limited to the SPH method presented here, but can be easily applied to other simulation techniques employed for particulate suspensions.  相似文献   

11.
In this paper, we present a novel SPH framework to simulate incompressible fluid that satisfies both the divergence‐ free condition and the density‐invariant condition. In our framework, the two conditions are applied separately. First, the divergence‐free condition is enforced when solving the momentum equation. Later, the density‐invariant condition is applied after the time integration of the particle positions. Our framework is a purely Lagrangian approach so that no auxiliary grid is required. Compared to the previous density‐invariant based SPH methods, the proposed method is more accurate due to the explicit satisfaction of the divergence‐free condition. We also propose a modified boundary particle method for handling the free‐slip condition. In addition, two simple but effective methods are proposed to reduce the particle clumping artifact induced by the density‐invariant condition.  相似文献   

12.
We present a physically based real‐time water simulation and rendering method that brings volumetric foam to the real‐time domain, significantly increasing the realism of dynamic fluids. We do this by combining a particle‐based fluid model that is capable of accounting for the formation of foam with a layered rendering approach that is able to account for the volumetric properties of water and foam. Foam formation is simulated through Weber number thresholding. For rendering, we approximate the resulting water and foam volumes by storing their respective boundary surfaces in depth maps. This allows us to calculate the attenuation of light rays that pass through these volumes very efficiently. We also introduce an adaptive curvature flow filter that produces consistent fluid surfaces from particles independent of the viewing distance.  相似文献   

13.
We present an integrated, fully GPU‐based processing pipeline to interactively render new views of arbitrary scenes from calibrated but otherwise unstructured input views. In a two‐step procedure, our method first generates for each input view a dense proxy of the scene using a new multi‐view stereo formulation. Each scene proxy consists of a structured cloud of feature aware particles which automatically have their image space footprints aligned to depth discontinuities of the scene geometry and hence effectively handle sharp object boundaries and occlusions. We propose a particle optimization routine combined with a special parameterization of the view space that enables an efficient proxy generation as well as robust and intuitive filter operators for noise and outlier removal. Moreover, our generic proxy generation allows us to flexibly handle scene complexities ranging from small objects up to complete outdoor scenes. The second phase of the algorithm combines these particle clouds in real‐time into a view‐dependent proxy for the desired output view and performs a pixel‐accurate accumulation of the colour contributions from each available input view. This makes it possible to reconstruct even fine‐scale view‐dependent illumination effects. We demonstrate how all these processing stages of the pipeline can be implemented entirely on the GPU with memory efficient, scalable data structures for maximum performance. This allows us to generate new output renderings of high visual quality from input images in real‐time.  相似文献   

14.
In this paper, a particle‐based multiphase method for creating realistic animations of bubbles in water–solid interaction is presented. To generate bubbles from gas dissolved in the water on the fly, we propose an approximate model for the creation of bubbles, which takes into account the influence of gas concentration in the water, the solid material, and water–solid velocity difference. As the air particle on the bubble surface is treated as a virtual nucleation site, the bubble absorbs air from surrounding water and grows. The density and pressure forces of air bubbles are computed separately using smoothed particle hydrodynamics; then, the two‐way coupling of bubbles with water and solid is solved by a new drag force, so the generated bubbles’ flow on the surface of solid and the deformation in the rising process can be simulated. Additionally, touching bubbles merge together under the cohesion forces weighted by the smoothing kernel and velocity difference. The experimental results show that this method is capable of simulating bubbles in water–solid interaction under different physical conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
SPH particle boundary forces for arbitrary boundaries   总被引:1,自引:0,他引:1  
This paper is concerned with approximating arbitrarily shaped boundaries in SPH simulations. We model the boundaries by means of boundary particles which exert forces on a fluid. We show that, when these forces are chosen correctly, and the boundary particle spacing is a factor of 2 (or more) less than the fluid particle spacing, the total boundary force on a fluid SPH particle is perpendicular to boundaries with negligible error. Furthermore, the variation in the force as a fluid particle moves, while keeping a fixed distance from the boundary, is also negligible. The method works equally well for convex or concave boundaries. The new boundary forces simplify SPH algorithms and are superior to other methods for simulating complicated boundaries. We apply the new method to (a) the rise of a cylinder contained in a curved basin, (b) the spin down of a fluid in a cylinder, and (c) the oscillation of a cylinder inside a larger fixed cylinder. The results of the simulations are in good agreement with those obtained using other methods, but with the advantage that they are very simple to implement.  相似文献   

16.
A heavy particle is lifted from the bottom of a channel in a plane Poiseuille flow when the Reynolds number is larger than a critical value. In this paper we obtain correlations for lift-off of particles in Oldroyd-B fluids. The fluid elasticity reduces the critical shear Reynolds number for lift-off. The effect of the gap size between the particle and the wall, on the lift force, is also studied. A particle lifted from the channel wall attains an equilibrium height at which its buoyant weight is balanced by the hydrodynamic lift force. Choi and Joseph [Choi HG, Joseph DD. Fluidization by lift of 300 circular particles in plane Poiseuille flow by direct numerical simulation. J Fluid Mech 2001;438:101-128] first observed multiple equilibrium positions for a particle in Newtonian fluids. We report several new results for the Newtonian fluid case based on a detailed study of the multiple equilibrium solutions, e.g. we find that at a given Reynolds number there are regions inside the channel where no particle, irrespective of its weight, can attain a stable equilibrium position. This would result in particle-depleted zones in channels with Poiseuille flows of a dilute suspension of particles of varying densities. Multiple equilibrium positions of particles are also found in Oldroyd-B fluids. All the results in this paper are based on 2D direct numerical simulations.  相似文献   

17.
Smoothed particle hydrodynamics (SPH) has become increasingly important during recent decades. Its meshless nature, inherent representation of convective transport and ability to simulate free surface flows make SPH particularly promising with regard to simulations of industrial mixing devices for high-viscous fluids, which often have complex rotating geometries and partially filled regions (e.g., twin-screw extruders). However, incorporating the required geometries remains a challenge in SPH since the most obvious and most common ways to model solid walls are based on particles (i.e., boundary particles and ghost particles), which leads to complications with arbitrarily-curved wall surfaces. To overcome this problem, we developed a systematic method for determining an adequate interaction between SPH particles and a continuous wall surface based on the underlying SPH equations. We tested our new approach by using the open-source particle simulator “LIGGGHTS” and comparing the velocity profiles to analytical solutions and SPH simulations with boundary particles. Finally, we followed the evolution of a tracer in a twin-cam mixer during the rotation, which was experimentally and numerically studied by several other authors, and ascertained good agreement with our results. This supports the validity of our newly-developed wall interaction method, which constitutes a step forward in SPH simulations of complex geometries.  相似文献   

18.
In this paper, we present a novel method for the direct volume rendering of large smoothed‐particle hydrodynamics (SPH) simulation data without transforming the unstructured data to an intermediate representation. By directly visualizing the unstructured particle data, we avoid long preprocessing times and large storage requirements. This enables the visualization of large, time‐dependent, and multivariate data both as a post‐process and in situ. To address the computational complexity, we introduce stochastic volume rendering that considers only a subset of particles at each step during ray marching. The sample probabilities for selecting this subset at each step are thereby determined both in a view‐dependent manner and based on the spatial complexity of the data. Our stochastic volume rendering enables us to scale continuously from a fast, interactive preview to a more accurate volume rendering at higher cost. Lastly, we discuss the visualization of free‐surface and multi‐phase flows by including a multi‐material model with volumetric and surface shading into the stochastic volume rendering.  相似文献   

19.
建立基于光滑粒子动力学(smoothed particle hydrodynamics, SPH)、有限元法(finite element method, FEM)和无反射边界耦合的结构入水分析方法,将无限水域利用无反射边界条件截断成有限水域,将有限水域分为流体变形大的SPH区域、流体变形小的FEM区域和声学流体FEM区域,结构用FEM离散。采用通用接触算法模拟SPH与FEM的耦合,采用声固耦合方法处理FEM区域之间的耦合,建立流固耦合的SPH FEM分析方法。该方法结合SPH模拟大变形的优点和FEM的高效性,可实现含自由液面变形、液体飞溅和无限水域等特点的流固耦合问题的模拟,为结构入水分析缩小离散区域、降低自由度和SPH粒子数等提供一种有效的分析方法。  相似文献   

20.
The Finite Volume Particle Method (FVPM) is a meshless method based on a definition of interparticle area which is closely analogous to cell face area in the classical finite volume method. In previous work, the interparticle area has been computed by numerical integration, which is a source of error and is extremely expensive. We show that if the particle weight or kernel function is defined as a discontinuous top-hat function, the particle interaction vectors may be evaluated exactly and efficiently. The new formulation reduces overall computational time by a factor between 6.4 and 8.2. In numerical experiments on a viscous flow with an analytical solution, the method converges under all conditions. Significantly, in contrast with standard FVPM and SPH, error depends on particle size but not on particle overlap (as long as the computational domain is completely covered by particles). The new method is shown to be superior to standard FVPM for shock tube flow and inviscid steady transonic flow. In benchmarking on a viscous multiphase flow application, FVPM with exact interparticle area is shown to be competitive with a mesh-based volume-of-fluid solver in terms of computational time required to resolve the structure of an interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号