首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a novel realistic and stable turbulence synthesis method to simulate the turbulent details generated behind objects in smoothed particle hydrodynamics (SPH) fluids. Firstly, by approximating the boundary layer theory on the fly in SPH fluids, we propose a vorticity production model to identify which fluid particles shed from object surfaces and which are seeded as vortex particles. Then, we employ an SPH‐like summation interpolant formulation of the Biot–Savart law to calculate the fluctuating velocities stemming from the generated vorticity field. Finally, the stable evolution of the vorticity field is achieved by combining an implicit vorticity diffusion technique and an artificial dissipation term. Moreover, in order to efficiently catch turbulent details for rendering, we propose an octree‐based adaptive surface reconstruction method for particle‐based fluids. The experiment results demonstrate that our turbulence synthesis method provides an effect way to model the obstacle‐induced turbulent details in SPH fluids and can be easily added to existing particle‐based fluid–solid coupling pipelines. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
凝结是自然界中很常见的一种现象,其真实感仿真对虚拟现实、影视特效及游戏娱乐等领域都有重要的意义.针对传统的基于物理的仿真方法难以保持凝结小尺度液滴细节的问题,提出一种基于光滑粒子流体动力学与自适应流体隐式粒子法耦合的仿真方法.首先基于光滑粒子流体动力学离散建模空气的热传导,并辅以相对湿度模型和露点描述相变过程;然后结合...  相似文献   

3.
提出基于平滑粒子流体力学的自由界面流体模拟方法,采用了范德瓦尔斯方程与粒子间短距离排斥力和长距离吸引力作用的表面张力,设计出基于GPU的粒子泼溅算法。渲染算法完全消除了时间离散假象,具有交互式的高质量渲染效果。与传统拉格朗日算法相比,该方法具有简化的表面张力模型,快速的渲染方式,减小了运算的复杂性,有效提高了系统的运行速度。  相似文献   

4.
We propose a hybrid smoothed particle hydrodynamics solver for efficientlysimulating incompressible fluids using an interface handling method for boundary conditions in the pressure Poisson equation. We blend particle density computed with one smooth and one spiky kernel to improve the robustness against both fluid–fluid and fluid–solid collisions. To further improve the robustness and efficiency, we present a new interface handling method consisting of two components: free surface handling for Dirichlet boundary conditions and solid boundary handling for Neumann boundary conditions. Our free surface handling appropriately determines particles for Dirichlet boundary conditions using Jacobi‐based pressure prediction while our solid boundary handling introduces a new term to ensure the solvability of the linear system. We demonstrate that our method outperforms the state‐of‐the‐art particle‐based fluid solvers.  相似文献   

5.
In this paper, we introduce a fast and consistent smoothed particle hydrodynamics (SPH) technique which is suitable for convection–diffusion simulations of incompressible fluids. We apply our temporal blending technique to reduce the number of particles in the simulation while smoothly changing quantity fields. Our approach greatly reduces the error introduced in the pressure term when changing particle configurations. Compared to other methods, this enables larger integration time‐steps in the transition phase. Our implementation is fully GPU‐based to take advantage of the parallel nature of particle simulations.  相似文献   

6.
We propose a particle-based hybrid method for simulating volume preserving viscoelastic fluids with large deformations. Our method combines smoothed particle hydrodynamics (SPH) and position-based dynamics (PBD) to approximate the dynamics of viscoelastic fluids. While preserving their volumes using SPH, we exploit an idea of PBD and correct particle velocities for viscoelastic effects not to negatively affect volume preservation of materials. To correct particle velocities and simulate viscoelastic fluids, we use connections between particles which are adaptively generated and deleted based on the positional relations of the particles. Additionally, we weaken the effect of velocity corrections to address plastic deformations of materials. For one-way and two-way fluid-solid coupling, we incorporate solid boundary particles into our algorithm. Several examples demonstrate that our hybrid method can sufficiently preserve fluid volumes and robustly and plausibly generate a variety of viscoelastic behaviors, such as splitting and merging, large deformations, and Barus effect.  相似文献   

7.
In this paper, we present a novel method for the direct volume rendering of large smoothed‐particle hydrodynamics (SPH) simulation data without transforming the unstructured data to an intermediate representation. By directly visualizing the unstructured particle data, we avoid long preprocessing times and large storage requirements. This enables the visualization of large, time‐dependent, and multivariate data both as a post‐process and in situ. To address the computational complexity, we introduce stochastic volume rendering that considers only a subset of particles at each step during ray marching. The sample probabilities for selecting this subset at each step are thereby determined both in a view‐dependent manner and based on the spatial complexity of the data. Our stochastic volume rendering enables us to scale continuously from a fast, interactive preview to a more accurate volume rendering at higher cost. Lastly, we discuss the visualization of free‐surface and multi‐phase flows by including a multi‐material model with volumetric and surface shading into the stochastic volume rendering.  相似文献   

8.
We propose a new boundary handling method for smoothed particle hydrodynamics (SPH). Previous approaches required the use of boundary particles to prevent particles from sticking to the boundary. We address this issue by correcting the fundamental equations of SPH with the integration of a kernel function. Our approach is able to directly handle triangle mesh boundaries without the need for boundary particles. We also show how our approach can be integrated into a position‐based fluid framework.  相似文献   

9.
In the previous works, the real‐time fluid‐character animation could hardly be achieved because of the intensive processing demand on the character's movement and fluid simulation. This paper presents an effective approach to the real‐time generation of the fluid flow driven by the motion of a character in full 3D space, based on smoothed‐particle hydrodynamics method. The novel method of conducting and constraining the fluid particles by the geometric properties of the character motion trajectory is introduced. Furthermore, the optimized algorithms of particle searching and rendering are proposed, by taking advantage of the graphics processing unit parallelization. Consequently, both simulation and rendering of the 3D liquid effects with realistic character interactions can be implemented by our framework and performed in real‐time on a conventional PC. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
The selective withdrawal of weakly compressible fluids is investigated by smoothed particle hydrodynamics (SPH) with a revised model of surface tension. In our model problem, fluid is withdrawn from a two-dimensional microcavity through a narrow outlet above the interface of two immiscible fluids. The outflow boundary is implemented by a particular zone of fluid particles with prescribed velocity, together with the introduction of artificial boundary particles. Based on the average number density of fluid particles, the effective contribution of boundary particles is corrected for the compressible context. It is found that there exists a critical withdrawal rate for each initial interface height, beyond which the lower phase becomes entrained in a thin spout along with the upper phase. Besides, the Froude number with redefinition for this kind of multiphase flow could serve as a criterion of flow behavior. Furthermore, larger surface tension, smaller dynamical viscosity and density of the upper phase all lead to longer threshold time of formation of the spout state, and thus are favorable to the withdrawal of upper phase both in terms of higher efficiency and larger quantity.  相似文献   

11.
The vessel wall and the blood flow interact and influence each other, and real‐time coupling between them is of great importance to the virtual surgery as well as the research and diagnosis of vascular disease. On the basis of smoothed particle hydrodynamics (SPH), we present a new approach to solve non‐Newtonian viscous force of blood and a parallel mixed particles‐based coupling method for blood flow and vessel wall. Meanwhile, we also design a proxy particle‐based vessel wall force visualization method. Our method is as follows. Firstly, we solve the non‐Newtonian viscous forces of blood through the SPH method to discretize the Casson equation. Secondly, in each time step, we combine blood particles and sampling proxy particles on the blood vessel wall to form mixed particles and calculate the interaction forces through the SPH method between every pair of the neighboring mixed particles inside the graphics processing unit. Thirdly, the forces of the proxy particles will be mapped to the color display of the proxy particle. Experimental results demonstrate that our method is able to implement real‐time sizeable coupling of blood flow and vessel wall while mainly ensuring physical authenticity and it can also provide real‐time and obvious information about vessel wall force distribution. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
This paper proposes a novel hybrid particle‐grid approach to liquid simulation, which uses the fluid‐implicit‐particle (FLIP) method to resolve the liquid motion and a grid‐based particle correction method to complement FLIP. The correction process addresses the high‐frequency errors in FLIP ensuring that the particles are properly distributed. The proposed approach enables the corrective procedure to avoid directly processing the particle relationships and supports flexible corrective forces. The proposed technique effectively and efficiently improves the distribution of the particles and therefore enhances the overall simulation quality. The experimental results confirm that the technique is able to conserve the liquid volume and to produce dynamic surface motions, thin liquid sheets, and smooth surfaces without disturbing artifacts such as bumpy noise.  相似文献   

13.
By modeling mass transfer phenomena, we simulate solids and liquids dissolving or changing to other substances. We also deal with the very small‐scale phenomena that occur when a fluid spreads out at the interface of another fluid. We model the pressure at the interfaces between fluids with Darcy's Law and represent the viscous fingering phenomenon in which a fluid interface spreads out with a fractal‐like shape. We use hybrid grid‐based simulation and smoothed particle hydrodynamics (SPH) to simulate intermolecular diffusion and attraction using particles at a computable scale. We have produced animations showing fluids mixing and objects dissolving.  相似文献   

14.
We propose a new method based on the use of fractional differentiation for improving the efficiency and realism of simulations based on smoothed particle hydrodynamics (SPH). SPH represents a popular particle‐based approach for fluid simulation and a high number of particles is typically needed for achieving high quality results. However, as the number of simulated particles increase, the speed of computation degrades accordingly. The proposed method employs fractional differentiation to improve the results obtained with SPH in a given resolution. The approach is based on the observation that effects requiring a high number of particles are most often produced from colliding flows, and therefore, when the modeling of this behavior is improved, higher quality results can be achieved without changing the number of particles being simulated. Our method can be employed to reduce the resolution without significant loss of quality, or to improve the quality of the simulation in the current chosen resolution. The advantages of our method are demonstrated with several quantitative evaluations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
使用光滑粒子流体动力学方法进行流体仿真,并提出一种边界校正方法。使用快速 泊松盘采样算法对容器边界进行采样,生成边界粒子,对边界粒子质量进行差值估算,计算边界 粒子对流体粒子的作用力,以此来仿真流体与边界的相互作用。该方法可避免穿刺、滞留等现象 的发生。通过实验验证了该算法的正确性。  相似文献   

16.
Gadget is a simulation application for N‐body and smoothed particle hydrodynamics problems in cosmology, and it is widely applied in solving series of cosmological problems. N‐body focuses on the motion of the interaction of N particles, and smoothed particle hydrodynamics is a fluid simulation algorithm that studies the movement of fluid through particle simulation. Most scholars focus their attention on accelerating Gadget on multi‐core CPU or graphics processing units (GPUs) platforms. However, these research activities failed to achieve CPU–GPU hybrid computing, which resulted in tremendous waste of CPU computing resources. In this paper, we propose a CPU–GPU hybrid parallel strategy to accelerate Gadget‐2, a massively parallel structure formation code for cosmological simulations. This strategy uses CPU and GPU to process the calculation of short‐range force. To ensure CPU and GPU workload balance, a dynamic task allocation scheme is proposed according to the computational performance difference between the CPU and GPU. Experimental results showed that our CPU–GPU hybrid parallel strategy achieved an overall speedup factor of 18.6 and a partial speedup factor for short‐range force calculation of 28.35 compared with a single‐core CPU implementation for particles in million‐size magnitudes. Moreover, compared with a GPU platform that contained 12 CPU cores and one GPU, our hybrid parallel strategy obtained overall speedup and partial speedup factors of 6% and 20%, respectively. Furthermore, the scalability of the hybrid strategy is very fine – its performance will be enhanced when the problem scale is increasing. However, this strategy also has its limitation that the performance enhancement will be decreasing if the ratio(the number of CPU cores divides that of the GPU cards) reduces. Finally, in our hybrid strategy, the CPU coefficient of utilization improved by 17.14% or better. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
基于光滑粒子动力学(SPH)方法模拟流体时流体表面张力的作用在固液、气液交界 处不可忽视,其影响模拟的准确性和视觉真实感。目前已有的表面张力模型如连续表面力(CSF) 模型、粒子间相互作用力(IIF)模型都存在各自的缺陷。针对IIF 模型模拟表面张力时所产生的 粒子非物理聚集、流体表面形状不规则等现象,采用基于类Lennard-Jones 势函数的分子间聚斥 力对表面张力建模,并定义了基于法向差的SPH 张力修正项以解决IIF 模型不能保证流体表面 面积最小化问题。实验结果表明,该方法能够稳定和正确地模拟两相交界处的表面张力的效果。  相似文献   

18.
基于物理的海浪场景的真实感建模与绘制   总被引:2,自引:0,他引:2  
提出一种基于物理的海浪场景的真实感建模与绘制算法.基于平滑粒子流体动力学模型.首先提出一种压力状态方程以取代传统的理想气体状态方程,从而在保证系统稳定性的同时,最大程度地保证液体的体积守恒;为了实现对水面浪花飞溅和泡沫的模拟,提出自适应的表面张力模型,通过制定3类流体粒子状态的转化规则,实现了飞溅粒子和主水体之间的无缝连接;并采用GPU图形硬件加速技术大大地提高了整个过程计算效率.最终绘制出海浪行进、翻卷、破碎及拍岸等真实感较强的动态效果.  相似文献   

19.
为了模拟固体在外力作用下产生的破裂现象,提出一种采用细分粒子的刚体破裂 的模拟算法。该算法首先将固体的四面体网格绑定到一系列离散的粒子上;再利用光滑粒子流 体动力学(SPH)对线弹性力学方程进行离散求解;并采用粒子细分的算法来进行开裂面的生成 和延展。最后实现了多个固体现象的模拟,如砖块碎落、砖墙受力倒塌等。文中算法可适用于 刚体脆性破碎的动画应用。  相似文献   

20.
A Lagrangian particle model for multiphase multicomponent fluid flow, based on smoothed particle hydrodynamics (SPH), was developed and used to simulate the flow of an emulsion consisting of bubbles of a non-wetting liquid surrounded by a wetting liquid. In SPH simulations, fluids are represented by sets of particles that are used as discretization points to solve the Navier-Stokes fluid dynamics equations. In the multiphase multicomponent SPH model, a modified van der Waals equation of state is used to close the system of flow equations. The combination of the momentum conservation equation with the van der Waals equation of state results in a particle equation of motion in which the total force acting on each particle consists of many-body repulsive and viscous forces, two-body (particle-particle) attractive forces, and body forces such as gravitational forces. Similar to molecular dynamics, for a given fluid component the combination of repulsive and attractive forces causes phase separation. The surface tension at liquid-liquid interfaces is imposed through component dependent attractive forces. The wetting behavior of the fluids is controlled by phase dependent attractive interactions between the fluid particles and stationary particles that represent the solid phase. The dynamics of fluids away from the interface is governed by purely hydrodynamic forces. Comparison with analytical solutions for static conditions and relatively simple flows demonstrates the accuracy of the SPH model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号