首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用Gleeble−3500热模拟机的热压缩实验,研究了铸态GH2132合金在变形温度为1173~1423 K和应变速率为0.001~10 s^(−1)条件下的热压缩变形行为和微观组织演化规律,分析该合金在不同变形条件下的热变形激活能Q值、应变速率敏感指数m值、温度敏感指数s值的变化规律,基于动态材料模型(DMM)建立热加工图,结合微观组织确定出最佳热加工参数。结果表明:随着变形温度的升高、应变速率的降低,流变应力减小,GH2132合金为应变速率和温度敏感型材料。提高变形温度、降低应变速率有利于获得均匀分布的等轴晶粒。结合热加工图和高温变形微观组织确定,铸态GH2132合金合理的热变形参数所对应的变形温度和应变速率区间分别为1295~1418 K和3.07~10 s^(−1)。  相似文献   

2.
利用Thermecmastor-Z热模拟试验机,在变形温度为350~450℃、应变速率为0.001~1 s^(−1)条件下,对一种平均晶粒尺寸为4.1μm、室温抗拉强度达到324 MPa的细晶高强度Mg-Gd-Y-Zn-Zr合金进行了热压缩变形试验。利用Arrenhenius模型描述该合金的热流变行为,并构建了热变形本构方程。结果表明:基于试验数据绘制的真应力−应变曲线显示出较为明显的动态再结晶行为特征。通过数据拟合得出再结晶临界应力约为峰值应力的0.851,临界应变约为峰值应变的0.309;建立了动态再结晶临界应变模型和变形温度为350、400和450℃,应变速率为0.01、0.1和1 s^(−1)条件下的动态再结晶体积分数预测模型。所建立的方程和模型可为细晶高强度Mg-Gd-Y-Zn-Zr合金热变形过程力学行为及组织演变行为的预测提供依据。  相似文献   

3.
采用Gleeble-3500热模拟机研究了GH708合金在变形温度1000℃~1200℃,应变速率为0.001s-1~1s-1条件下的热变形行为.确定了GH708合金的热变形方程,建立了其热加工图(Processing Map),并通过组织观察对其热加工图进行了解释.GH708合金的热变形激活能Q为493 kJ/mol;不同真应变下的热加工图相似,随着变形温度的升高及应变速率的降低,能量消耗效率η逐渐升高.真应变为0.6时,在变形温度为1150℃左右、应变速率为0.001 s-1时,能量消耗效率达到峰值,约为56%.该结果为GH708合金的热加工工艺优化提供了理论依据.  相似文献   

4.
GH708高温合金热变形行为   总被引:1,自引:0,他引:1  
采用Gleeble-3500热模拟机研究了GH708合金在变形温度1000℃~1200℃,应变速率为0.001s-1~1s-1条件下的热变形行为.确定了GH708合金的热变形方程,建立了其热加工图(Processing Map),并通过组织观察对其热加工图进行了解释.GH708合金的热变形激活能Q为493 kJ/mol;不同真应变下的热加工图相似,随着变形温度的升高及应变速率的降低,能量消耗效率η逐渐升高.真应变为0.6时,在变形温度为1150℃左右、应变速率为0.001 s-1时,能量消耗效率达到峰值,约为56%.该结果为GH708合金的热加工工艺优化提供了理论依据.  相似文献   

5.
宁静  王敖  苏杰  程兴旺 《锻压技术》2022,(12):234-239
采用Gleeble-3800热模拟试验机研究了含有W、Mo等多种碳化物形成元素的新型中合金超高强度钢的热变形行为,变形温度为800~1200℃,应变速率为0.01~10 s^(-1),最大应变量为0.7。热模拟试验得到了试验钢的高温流变应力曲线,其变形抗力随变形温度的降低和应变速率的提高而增加。在变形温度1000℃以上进行热压缩时,试验钢可发生动态再结晶;变形温度的升高会促进晶粒粗化及二次再结晶的发生,而应变速率的提升有利于促进再结晶晶粒的细化和均匀化。根据试验钢的高温流变应力曲线,计算出试验钢的热加工本构方程,并建立了真应变为0.4的热加工图。结合微观组织演变的分析结果,得出试验钢的最佳热加工区域应为:变形温度为1000~1100℃、应变速率为1~10 s^(-1)。  相似文献   

6.
对GH4720Li合金在1080~1180℃、应变速率为0.01~10 s~(-1)条件下的单道次压缩变形行为进行了研究。利用压缩实验的应力-应变关系曲线,计算了变形条件下的热变形激活能,建立了相应的本构方程和热加工图。结果表明:动态再结晶是GH4720Li合金的主要软化机制;合金在1120~1180℃、应变速率在0.1~1 s~(-1)、真应变0.7时实现完全动态再结晶,最佳变形温度为1120~1140℃;γ′相的析出行为引起峰值应力和热变形激活能显著变化;热变形激活能在1160℃,达到最小值602 k J/mol;应变速率达到1 s~(-1)以上,合金出现失稳现象。  相似文献   

7.
司家勇  陈龙  廖晓航  李志 《锻压技术》2017,(10):180-188
通过高温热压缩试验,得到经DP工艺处理的GH4169合金在变形温度为900~1060℃、应变速率为0.001~0.5 s~(-1)、压缩量为70%条件下的真应力-真应变曲线,依据流变曲线特征,界定出加工硬化-动态回复和动态流变软化两个阶段,建立了相应的新型高温流变本构模型,同时观察了变形显微组织,进行了定量金相统计分析。结果表明:GH4169合金高温压缩显微组织中的动态再结晶晶粒尺寸随变形温度的升高或应变速率的降低而逐渐增大;δ相含量逐渐减少,在1060℃时基本消失。通过引入标准统计参数——相关系数和平均相对误差绝对值,表明预测值和实际试验数值吻合度较高,所建立的本构方程可以用于准确预测经DP工艺处理的GH4169合金热成形过程中的应力值和热成形工艺优化。  相似文献   

8.
在热模拟试验机上进行了高温压缩试验,研究了GH4698高温合金在不同变形温度(950~1200℃)和应变速率(0. 01~10 s^-1)条件下的流变行为,建立了基于流变曲线的本构方程及以动态材料模型为基础的热加工图。借助扫描电镜和背散射电子衍射技术(EBSD)对变形后试样进行组织分析。结果表明:GH4698高温合金流变应力随着变形温度的降低和应变速率的加快而逐渐增加。在变形温度为1000~1200℃、应变速率为0. 01~0. 05 s^-1的热变形条件下,GH4698高温合金具有较佳的热加工行为。在高、低功率耗散率区域中,随着功率耗散率值的增加,动态再结晶百分数均会增加,再结晶平均晶粒尺寸增大,大角度晶界分数增加。  相似文献   

9.
《铸造技术》2017,(6):1278-1282
采用真空电子束焊接的方法连接FGH4096和GH4133B两种高温合金,得到具有双重性能的FGH4096-GH4133B双合金。采用Gleeble-1500D热模拟试验机对所得的双合金进行等温热模拟压缩实验,分析该双合金在变形温度为1 020~1 140℃,应变速率为0.001~1.0 s~(-1)条件下的变形行为及流变应力的变化规律,观察结果表明:流变应力受变形温度和应变速率显著影响;流变应力随变形温度的升高和应变速率的降低而降低,流变应力在经历加工硬化的上升阶段后达到硬化和软化相平衡的稳定阶段。采用双曲正弦模型确定该合金在应变为0.6时变形应力指数n和变形激活能Q分别为3.6589和557.31 kJ/mol,建立了相应的热变形本构方程。  相似文献   

10.
采用Gleeble-1500热模拟实验机在温度为700~1200℃,应变速率为0.002~5 s~(-1)、最大变形量为55%条件下对特大型支承辊Cr4合金钢进行热压缩试验,研究了该合金的热变形行为及热加工特征,建立了Cr4合金钢在试验条件下的热加工图。结果表明:在其他变形参数恒定时,Cr4合金钢的热变形真应力随应变速率的升高而逐渐变大,随变形温度的提高而急剧降低;在变形温度为750~900℃,应变速率为0.002~0.01 s~(-1),变形温度为750~800℃,应变速率为0.049~2.718 s~(-1)和变形温度为800~1050℃、应变速率为0.1~4.482 s~(-1)的3个区域内易产生流变失稳现象;动态再结晶是触发材料流变软化及稳态流变的主要原因,Cr4合金钢的安全热加工区域的变形温度在950~1150℃之间、应变速率在0.018~0.223 s~(-1)之间。  相似文献   

11.
GH674高温合金的热变形行为   总被引:6,自引:1,他引:5  
采用Gleeble-1500热模拟机对GH674高温合金在应变速率为0.01s-1~1.0s-1、变形温度为950℃~1200℃、真应变为1的条件下的热变形行为进行了研究。结果表明,在试验研究的变形条件下,GH674型高温合金在热压缩变形过程中发生明显的动态再结晶;用Zener-Hollomon参数的指数函数能较好地描述该合金高温变形时的流变行为;所获得的峰值应力热变形方程为σp=21.3139ln.ε+9.580495×105/Τ-538.11638;其热变形激活能Q为373.7102803kJ/mol。  相似文献   

12.
GH625镍基合金的高温压缩变形行为及组织演变   总被引:2,自引:0,他引:2  
在Gleeble-1500D热模拟机上采用等温压缩实验研究GH625合金的高温压缩变形行为,获得合金在温度为1000~1200℃、应变速率为10-2~10s-1的条件下的真应力—应变曲线,并在考虑摩擦和变形热效应的基础上对真应力—应变曲线进行修正。对修正后的峰值应力进行线性回归,得到合金的高温材料常数:Q=635.38kJ/mol,α=0.008404MPa-1,n=3.52。通过非线性回归建立GH625合金包含应变量的高温变形本构模型。在应变速率为0.1s-1时,随着热变形温度的升高,合金发生动态再结晶的体积分数随之增加,在1000~1100℃发生部分动态再结晶,当温度达到1200℃时,发生完全动态再结晶,此时平均晶粒尺寸约为22.21μm。  相似文献   

13.
以20CrNi2Mo低碳钢为研究对象,采用DIL805A/T热模拟试验机在变形温度为900~1050℃、应变速率为0.001~1s^(-1)条件下进行等温单道次轴向热压缩试验,建立了20CrNi2Mo钢高温压缩的最大变形抗力本构方程和热加工图,并观察了热变形组织。结果表明:真应变值为0.1~0.5的热加工图中均存在两个功率耗散峰区,且随着应变量的增加峰区I逐渐向变形温度较高的区域移动,峰区II向应变速率增大的区域移动。热加工图中失稳区域随着应变量的增加先逐渐减小后又逐渐增大,在ε=0.4时,失稳区域最小,此应变量下20CrNi2Mo钢较优的热加工工艺区间为:变形温度940~960℃、应变速率0.001 s^(-1)或温度1025~1050℃、应变速率0.01~0.06 s^(-1)。  相似文献   

14.
对航空发动机用新型镍基高温合金GH3230在不同温度和应变速率下进行了高温拉伸-断裂试验,分析了应变速率和温度对该合金高温力学性能的影响。结果表明,随着应变速率的增加和温度的下降,合金的塑性流动应力有所提高,加工硬化指数n下降。从流变应力、应变速率和温度的相关性,得到应变速率敏感系数m是一个独立于温度的常量,并计算出GH3230合金的变形激活能Q=441kJ/mol。GH3230合金的热变形温度在1273 K左右时,合金在变形过程中能够充分再结晶,并得到晶粒细小、均匀的组织。SEM断口分析表明GH3230合金在高温下(1144~1273 K)应变率范围为10~(-3)~10~(-1)s~(-1)时的拉伸断裂都是由损伤引起的韧性断裂,且温度对断口形貌影响不大,但应变速率增大会使韧窝尺寸和深浅变小。  相似文献   

15.
为了研究Incoloy625镍基高温合金的热锻造行为,利用Gleeble-3800热模拟试验机对合金圆柱试样进行等温压缩试验。其最大真应变为0.8,变形温度分别为950,1000,1050,1100,1150,1200℃,应变速率为0.1,1,5,10,50,80 s~(-1)。分析了真应力-真应变曲线,获取不同参数下的最大变形抗力。结果表明:变形抗力(流动应力)随着应变速率的增加和变形温度的降低而增加。通过线性回归分析获得了Incoloy625镍基高温合金950~1200℃时的变形激活能为679.6 k J/mol和高温变形本构方程。  相似文献   

16.
采用Gleeble-3500热模拟试验机进行等温热压缩实验,分析了GH2907合金在变形温度950℃~1100℃、应变速率0.01s<sub>-1</sub>~10s<sub>-1</sub>、变形量60%条件下的高温流变行为。结果表明:合金的流变应力随着变形温度的升高或应变速率的降低而显著降低。利用Arrhenius双曲正弦方程和Zener-Hollomon参数计算得出合金的热变形激活能Q为463.043kJ.mol<sub>-1</sub>;合金的应力-应变曲线具有明显的动态再结晶(DRX)特征,变形量、变形温度以及应变速率对DRX体积分数均具有显著影响。基于应力-位错关系和DRX动力学,建立了加工硬化-动态回复和动态再结晶两个阶段的机理型本构模型,可用于描述流变应力与应变速率和变形温度之间的关系。误差分析相关系数R为0.987,预测值与实验值吻合良好,可用于表征预测GH2907合金的热变形行为。  相似文献   

17.
为了改善6061+Er铝合金的热加工性,通过扫描电镜、透射电镜和Gleeble-3800热模拟试验机,研究了6061+Er铝合金的微观组织,以及当变形温度为375~500℃、应变速率为0.001~10 s^(-1)时的热变形行为。结果表明,锻态6061+Er铝合金中存在微米级初生Al_(3)Er相和起弥散强化效果的纳米级次生AlEr相。建立了6061+Er铝合金热压缩变形过程中的流变应力本构方程,当应变速率为0.001~10 s^(-1)、变形温度为375~500℃时,流变应力计算值与峰值真应力实测值的误差<10%,验证了流变应力本构方程的准确性和可靠性。6061+Er铝合金适宜的热加工范围为:变形温度为375~400℃、应变速率为0.001~0.01 s^(-1)。  相似文献   

18.
采用Gleeble-3800热模拟试验机热模拟压缩试验研究了GH2150合金在不同试验参数下的热变形行为和再结晶演变规律。结果表明,在1000~1200℃范围内,应变速率为0.1~5 s-1,变形量分别为30%、50%、70%条件下,合金峰值应力随变形温度升高而降低,随应变速率降低而降低。结合真应力-真应变曲线及阿伦尼乌斯公式得到了GH2150合金的热变形本构方程,采用该方程得到的计算结果与实际结果的平均相对误差为4.36%,相关系数R=0.992,具有较好的吻合性。绘制GH2150合金动态再结晶图发现大变形量有利于提高再结晶分数,合金再结晶行为在50%变形量下主要受变形温度影响,在70%变形量下采用低应变速率更有利于再结晶发生。  相似文献   

19.
为了研究GH1016合金的高温热变形行为,利用Gleeble-3500热模拟试验机进行变形温度在1000~1150℃范围内,应变速率为0. 1~10 s-1,总压缩变形量为60%的热压缩试验,通过获得的真应力-真应变曲线研究了其变形行为。研究结果表明:真应力随变形温度的降低和应变速率的升高而增加。在一定的变形温度下,随着应变速率的增加,峰值应力和峰值应变均增加;在一定的应变速率下,随变形温度的升高,峰值应力和峰值应变减小。根据真应力-真应变曲线中的峰值应变和峰值应力数据,利用数据拟合的方法分别求得了GH1016合金的热变形本构方程和临界变形条件方程。在本实验条件下,GH1016合金发生动态再结晶的热激活能为456. 55 k J·mol-1。  相似文献   

20.
为研究选区激光熔化高温合金在高温下的塑性变形行为,对选区激光熔化制备的热等静压态GH3536高温合金进行热模拟压缩试验,获得了不同变形条件(变形温度为900、950、1000和1050℃;应变速率为0.01、0.1、1和10 s^(-1))下的高温真应力-真应变曲线,研究了该材料在高温条件下的载荷响应规律,并建立了基于Arrhenius方程的材料高温本构模型。研究发现,峰值应力随着应变速率的升高而升高,随着变形温度的升高而降低,最大峰值应力为592.8 MPa。基于Arrhenius方程建立了HIP状态下GH3536高温合金的高温本构方程,其预测精度的平均相对误差(AARE)为9.42%。通过组织观察发现,在高温变形过程中合金的组织被拉长,材料中有明显发生动态再结晶的迹象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号