首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 97 毫秒
1.
K-means算法的初始聚类中心的优化   总被引:10,自引:3,他引:7       下载免费PDF全文
传统的K-means算法对初始聚类中心敏感,聚类结果随不同的初始输入而波动,针对K-means算法存在的问题,提出了基于密度的改进的K-means算法,该算法采取聚类对象分布密度方法来确定初始聚类中心,选择相互距离最远的K个处于高密度区域的点作为初始聚类中心,理论分析与实验结果表明,改进的算法能取得更好的聚类结果。  相似文献   

2.
K-means聚类算法简单高效,应用广泛。针对传统K-means算法初始聚类中心点的选择随机性导致算法易陷入局部最优以及K值需要人工确定的问题,为了得到最合适的初始聚类中心,提出一种基于距离和样本权重改进的K-means算法。该聚类算法采用维度加权的欧氏距离来度量样本点之间的远近,计算出所有样本的密度和权重后,令密度最大的点作为第一个初始聚类中心,并剔除该簇内所有样本,然后依次根据上一个聚类中心和数据集中剩下样本点的权重并通过引入的参数[τi]找出下一个初始聚类中心,不断重复此过程直至数据集为空,最后自动得到[k]个初始聚类中心。在UCI数据集上进行测试,对比经典K-means算法、WK-means算法、ZK-means算法和DCK-means算法,基于距离和权重改进的K-means算法的聚类效果更好。  相似文献   

3.
针对传统K-means聚类算法对初始聚类中心和离群孤立点敏感的缺陷,以及现有引入密度概念优化的K-means算法均需要设置密度参数或阈值的缺点,提出一种融合最近邻矩阵与局部密度的自适应K-means聚类算法。受最邻近吸收原则与密度峰值原则启发,通过引入数据对象间的距离差异值构造邻近矩阵,根据邻近矩阵计算局部密度,不需要任何参数设置,采取最近邻矩阵与局部密度融合策略,自适应确定初始聚类中心数目和位置,同时完成非中心点的初分配。人工数据集和UCI数据集的实验测试,以及与传统K-means算法、基于离群点改进的K-means算法、基于密度改进的K-means算法的实验比较表明,提出的自适应K-means算法对人工数据集的孤立点免疫度较高,对UCI数据集具有更准确的聚类结果。  相似文献   

4.
基于密度的改进K均值算法及实现   总被引:4,自引:1,他引:3  
傅德胜  周辰 《计算机应用》2011,31(2):432-434
传统的K均值算法的初始聚类中心从数据集中随机产生,聚类结果很不稳定。提出一种基于密度算法优化初始聚类中心的改进K-means算法,该算法选择相互距离最远的k个处于高密度区域的点作为初始聚类中心。实验证明,改进的K-means算法能够消除对初始聚类中心的依赖,聚类结果有了较大的改进。  相似文献   

5.
聚类是数据挖掘领域最重要的技术之一,K-means是其中使用频率最高的举足轻重的聚类算法。然而,Kmeans算法表现严重依赖于初始中心,选取多少个初始中心以及选择哪些数据点作为初始中心对K-means算法十分重要。基于此,提出一种初始中心选取方法 DPCC(Density Peak Clustering Centers)。DPCC方法基于密度和距离生成一个选取决策图,将数据集中所有的密度峰值点凸显出来。这些密度峰值点即为DPCC方法为K-means算法提供的初始中心。实验表明,DPCC方法不仅可为K-means提供初始中心数量,还能有效提高K-means算法的准确度,并缩减K-means算法的执行时间。  相似文献   

6.
K-means算法是经典的基于划分的聚类算法。针对K-means算法的类簇数目难以确定、对初始聚类中心敏感的缺陷,提出了改进的K-means算法,重新定义了计算样本对象密度的方法,并且运用残差分析的方法从决策图中自动获取初始聚类中心和类簇数目。实验结果表明该算法可获得更好的聚类效果。  相似文献   

7.
K-均值聚类算法(K-means)是基于划分的聚类算法中的典型算法,针对K-means算法初始聚类中心存在对K依赖的缺陷,提出一种新的选取K-means算法初始聚类中心的方法,该方法提高聚类结果的有效性和稳定性;还提出一种极值选择法,将最大距离法和最小距离法相结合,进一步提高初始聚类中心选择的准确性。  相似文献   

8.
张琳  陈燕  汲业  张金松 《计算机应用研究》2011,28(11):4071-4073
针对传统K-means算法必须事先确定聚类数目以及对初始聚类中心的选取比较敏感的缺陷,采用基于密度的思想,通过设定Eps邻域以及Eps邻域内至少包含的对象数minpts来排除孤立点,并将不重复的核心点作为初始聚类中心;采用类内距离和类间距离的比值作为准则评价函数,将准则函数取得最小值时的聚类数作为最佳聚类数,这些改进有效地克服了K-means算法的不足。最后通过几个实例介绍了改进后算法的具体应用,实例表明改进后的算法比原算法有更高的聚类准确性,更能实现类内紧密类间远离的聚类效果。  相似文献   

9.
K-means聚类算法可以实现对指纹库的软划分,提高定位系统的查询效率和定位精度。由于K-means算法聚类中心选择和聚类数设定的随机性,使其稳定性较差,影响定位系统的性能,在此提出采用融合聚类的方式对K-means算法进行优化。采用基于密度峰值的聚类算法得到指纹库中每一个指纹点的局部密度和局部距离,然后计算综合决策量γ;选取跳跃点前的前k个点作为K-means算法的初始聚类中心,同时确定最佳聚类数k。试验结果表明,融合聚类算法相较于传统K-means算法定位误差在1.5 m内的概率提高了约9%,定位系统的定位精度得到明显提高。  相似文献   

10.
基于信息熵的精确属性赋权K-means聚类算法   总被引:4,自引:0,他引:4  
为了进一步提高聚类的精确度,针对传统K-means算法的初始聚类中心产生方式和数据相似性判断依据,提出一种基于信息熵的精确属性赋权K-means聚类算法。首先利用熵值法对数据对象的属性赋权来修正对象间的欧氏距离,然后通过比较初聚类的赋权类别目标价值函数,选择高质量的初始聚类中心来进行更高精度和更加稳定的聚类,最后通过Matlab编程实现。实验证明该算法的聚类精确度和稳定性要明显高于传统K-means算法。  相似文献   

11.
基于密度的K-means聚类中心选取的优化算法   总被引:2,自引:0,他引:2  
针对传统的K-means算法对于初始聚类中心点和聚类数的敏感问题,提出了一种优化初始聚类中心选取的算法。该算法针对数据对象的分布密度以及计算最近两点的垂直中点方法来确定k个初始聚类中心,再结合均衡化函数对聚类个数进行优化,以获得最优聚类。采用标准的UCI数据集进行实验对比,发现改进后的算法相比传统的算法有较高的准确率和稳定性。  相似文献   

12.
一种基于广度优先搜索的K-means初始化算法   总被引:1,自引:0,他引:1       下载免费PDF全文
K-means算法是在现实应用中非常广泛的聚类算法,K-means算法对初始中心的选择非常敏感,对已存在的有代表性的初始算法进行了研究,提出了一种基于广度优先搜索的K-means初始化算法。该算法综合考虑了密度与距离因素,选择初始点。分析表明该算法选择的初始点非常接近期望的中心点。  相似文献   

13.
通过引入上、下近似的思想,粗糙K-means已成为一种处理聚类边界模糊问题的有效算法,粗糙模糊K-means、模糊粗糙K-means等作为粗糙K-means的衍生算法,进一步对聚类边界对象的不确定性进行了细化描述,改善了聚类的效果。然而,这些算法在中心均值迭代计算时没有充分考虑各簇的数据对象与均值中心的距离、邻近范围的数据分布疏密程度等因素对聚类精度的影响。针对这一问题提出了一种局部密度自适应度量的方法来描述簇内数据对象的空间特征,给出了一种基于局部密度自适应度量的粗糙K-means聚类算法,并通过实例计算分析验证了算法的有效性。  相似文献   

14.
Clustering is an important and popular technique in data mining. It partitions a set of objects in such a manner that objects in the same clusters are more similar to each another than objects in the different cluster according to certain predefined criteria. K-means is simple yet an efficient method used in data clustering. However, K-means has a tendency to converge to local optima and depends on initial value of cluster centers. In the past, many heuristic algorithms have been introduced to overcome this local optima problem. Nevertheless, these algorithms too suffer several short-comings. In this paper, we present an efficient hybrid evolutionary data clustering algorithm referred to as K-MCI, whereby, we combine K-means with modified cohort intelligence. Our proposed algorithm is tested on several standard data sets from UCI Machine Learning Repository and its performance is compared with other well-known algorithms such as K-means, K-means++, cohort intelligence (CI), modified cohort intelligence (MCI), genetic algorithm (GA), simulated annealing (SA), tabu search (TS), ant colony optimization (ACO), honey bee mating optimization (HBMO) and particle swarm optimization (PSO). The simulation results are very promising in the terms of quality of solution and convergence speed of algorithm.  相似文献   

15.
针对二分K-均值算法由于随机选取初始中心及人为定义聚类数而造成的聚类结果不稳定问题,提出了基于密度和中心指标的Canopy二分K-均值算法SDC_Bisecting K-Means。首先计算样本中数据密度及其邻域半径;然后选出密度最小的数据并结合Canopy算法的思想进行聚类,将得到的簇的个数及其中心作为二分K-均值算法的输入参数;最后在二分K-均值算法的基础上引入指数函数和中心指标对原始样本进行聚类。利用UCI数据集和自建数据集进行模拟实验对比,结果表明SDC_Bisecting K-Means不仅使得聚类结果更精确,同时算法的运行速度更快、稳定性更好。  相似文献   

16.
K-means算法是一种基于划分的聚类算法,具有算法简单且收敛速度快的特点。但该算法的性能依赖于聚类中心的初始位置的选择。拓展了复杂网络的重要特征,针对带有属性的数据对象所构成的数据集,定义了多维属性对象的度、聚集度和聚集系数,选取度和聚集系数高的K个点作为K-means聚类的初始中心点。实验数据表明,改进后的K-means算法较传统的算法具有更高的效率和准确度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号