首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The high-cycle stress-life (SN) curve and fatigue crack growth threshold (ΔKth) behaviour of COMRAL-85TM, a 6061 aluminium–magnesium–silicon alloy reinforced with 20 vol.% Al2O3-based polycrystalline ceramic microspheres, and manufactured by a liquid metallurgy route, have been investigated for a stress ratio of R = −1 (fully reversed loading). Fatigue testing was conducted on both smooth round bar (SN) specimens and notched round bar (fatigue threshold) specimens. Unreinforced Al 6061-T6 also processed by a liquid metallurgy route and six powder metallurgy processed composites with particle volume fractions ranging between 5% and 30% were also studied. SN data revealed that the powder metallurgy processed composites generally gave longer fatigue lives than the matrix alloy, whereas COMRAL-85TM exhibited a reduced fatigue life. The fatigue threshold results were very similar for all the composites, being lower than for Al 6061-T6. Fatigue failure mechanisms were determined from examination of the fracture surfaces and the crack profiles.  相似文献   

2.
A study has been made of the effects of volume fraction and size of zircon particulates on fracture toughness and micromechanisms of fracture in Al/zircon particulate composites. The composites are prepared by a liquid metallurgy technique using volume fractions of zircon in the range 0·06–0·18 and particulate sizes between 75 and 250 μm. The study was conducted on composites in the cast and the forged conditions. The experimental programme included a particle size distribution study, tensile tests, fracture mechanics tests leading to J1c and crack tip opening displacement evaluation, fractographic investigations, etc. The process zone size at the crack tip was evaluated from crack tip stresses and strains, and compared with the interparticle spacing and particle diameter in order to understand the micromechanics of cracking. The Al/zircon composites were compared with Al/graphite composites in terms of strength and fracture toughness as a function of volume fraction of the filler phase, and regions of optimum performance were identified.  相似文献   

3.
4.
Six different Al–Al3 Ti composites were prepared via the powder metallurgy route. The size and volume fraction of Al3 Ti particles was varied for a systematic investigation of fracture behaviour. The dominant failure mechanism in the composites is particle fracture and void growth starting from the broken particles. In comparison with the pure Al–matrix, an incorporation of Al3 Ti particles reduces the crack initiation toughness and reduces the slope of the crack growth resistance curve. The inter-particle distance was found to be the main microstructural parameter controlling the slope of the crack growth resistance curve. The modified Gurson–Tvergaard–Needleman model (GTN model) was applied to one of the composites. The behaviour of tensile specimens could be successfully modelled, whereas the experimentally observed crack propagation in precracked single edge bend specimens [SE(B)] could not be simulated with the GTN model.  相似文献   

5.
The fracture toughness and deformation mechanism of PP/CaCO3 (15 wt.%) composites were studied and related to load-bearing capacity of the particles. To alter the load-bearing capacity of the particles, different particle sizes (0.07–7 μm) with or without stearic acid coating were incorporated. The fracture toughness of the composites was determined using J-Integral method and the deformation mechanism was studied by transmission optical microscopy of the crack tip damage zone. It was observed that the load-bearing capacity of the particles decreased by reduction of particle size and application of coating. A linear relationship between normalized fracture toughness and inverse of load-bearing capacity of particles was found. The crack tip damage zone in composites, which consists in massive crazing, further grows by reduction in load-bearing capacity.  相似文献   

6.
Mechanical behaviour of diamond reinforced metals   总被引:1,自引:0,他引:1  
Diamond reinforced metals with a diamond content of 55–60 vol.% were made by gas driven liquid metal infiltration. They were characterized with regard to their stiffness, strength and fracture toughness as a function of diamond particle size and matrix alloy by means of tensile and Chevron notch tests, respectively. The choice of the metal matrix, i.e. pure Al, Al–Cu, Cu–B and Ag–Si alloys was made in view of their application in thermal management where high thermal conductivity is important. For undamaged material Young's moduli, measured in unloading–reloading cycles necessary to measure static Young's modulus, of 250 GPa for Al-based and 300 GPa for Ag-based composites were obtained. The copper-based composites exhibited much lower values indicating that the small deformation necessary to measure Young's modulus induced already considerable damage. Strain to fracture of the composites was found to be a few tenth of a percent. An ultimate tensile strength of approximately 300 MPa was reached for the silver-based composites compared with roughly 150 MPa for the Al-based and below 50 MPa for the Cu-based composites. The size of the diamond particles had little influence on stiffness and strength of the composites but fracture toughness increased with increasing particle size. The differences in the mechanical behaviour of the configurations investigated can be rationalized by observations made during fractographic investigations by scanning electron microscopy. Additionally, the damage evolution in the composites was observed by the repeated determination of the specimen's stiffness during the tensile tests.  相似文献   

7.
The present paper investigated the microstructure and mechanical properties of ZrB2-10 vol.%SiCp-10 vol.%ZrO2 composites hot pressed at three temperatures. Phase transformability from t-ZrO2 to m-ZrO2 during fracture was analyzed through calculating the volume fractions of m-ZrO2 and t-ZrO2 on polished and fracture surfaces. The densification temperature was found to have a significant effect on the microstructure, phase transformation and the properties of the composites. When the composite was hot pressed at 1950 °C, the average grain size was 9.5 µm, and the fracture toughness was 4.5 MPa·m1/2. Comparatively, when the composite was hot pressed at 1750 °C, the average grain size was 3.4 µm, and the fracture toughness increased by ~ 50% to 6.8 MPa·m1/2.  相似文献   

8.
Alumina/titanium silicon carbide (Al2O3-Ti3SiC2) composites and its functionally graded materials (FGMs) were fabricated by a powder metallurgy processes and their microstructure and properties were investigated, respectively. The experimental results showed that the Vickers hardness of composites decreased with increasing Ti3SiC2 content while the fracture toughness and strength exhibited the opposite trend. Minimum Vickers hardness (4 GPa), maximum strength (598 MPa) and maximum toughness (11.24 MPa m1/2) were reached in the pure Ti3SiC2 material. Strength and hardness of FGMs were evaluated. Observation using an scanning electron microscope (SEM) indicated that the presence of Ti3SiC2 of FGMs inhibited the growth of alumina grains through a pinning mechanism. The study shows that the combination of the layered Ti3SiC2 structure and the fine alumina grains can result in a Al2O3-Ti3SiC2 composites possessing a high toughness and low Vickers hardness without a sacrifice in the strength.  相似文献   

9.
In the present investigation, the effect of three different stir casting routes on the structure and properties of fine fly ash particles (13 μm average particle size) reinforced Al–7Si–0.35Mg alloy composite is evaluated. Among liquid metal stir casting, compocasting (semi solid processing), modified compocasting and modified compocasting followed by squeeze casting routes evaluated, the latter has resulted in a well-dispersed and relatively agglomerate and porosity free fly ash particle dispersed composites. Interfacial reactions between the fly ash particle and the matrix leading to the formation of MgAl2O4 spinel and iron intermetallics are more in liquid metal stir cast composites than in compocast composites.  相似文献   

10.
ZrB2–10 vol%SiC–20 vol%YSZ composites were prepared by hot-pressed sintering with yttria content ranging from 2 mol% to 8 mol% in YSZ. The phase constitution, microstructure and mechanical properties of the composites were found to be strongly dependent on the yttria content. The average grain size became bigger for the composites with higher yttria content. When the yttria content was below 3 mol%, there is no cubic zirconia in the polished surface of composites, and the flexural strength of the composites was above 740 MPa. With the increase in yttria content, the fracture toughness fell down from 6.4 MPa m1/2 to 5.6 MPa m1/2. Vickers’ hardness of the hot-pressed composites varied above 18 GPa without obvious effect of the yttria content.  相似文献   

11.
The (AlN, TiN)-Al2O3 composites were fabricated by reaction sintering powder mixtures containing 10-30 wt.% (Al, Ti)-Al2O3 at 1420-1520°C in nitrogen. It was found that the densification and mechanical properties of the sintered composites depended strongly on the Al, Ti contents of the starting powder and hot pressing parameters. Reaction sintering 20 wt.% (Al, Ti)-Al2O3 powder in nitrogen in 1520°C for 30 min yields (AlN, TiN)-Al2O3 composites with the best mechanical properties, with a hardness HRA of 94.1, bending strength of 687 MPa, and fracture toughness of 6.5 MPa m1/2. Microstructure analysis indicated that TiN is present as well dispersed particulates within a matrix of Al2O3. The AlN identified by XRD was not directly observed, but probably resides at the Al2O3 grain boundary. The fracture mode of these composites was observed to be transgranular.  相似文献   

12.
The present work was performed on ten metal matrix composites (MMCs) produced using the new powder injection technique. These MMCs were divided into two series in which pure aluminum was the matrix for one series, while an experimental 6063 alloy was the matrix for the second series. Small amounts of Ti, Zr and Sc were added to those composites, either individually or combined. In all cases the volume fraction of the reinforced B4C particles was in the range 12–15 vol. %. The molten metal was cast in an L-shaped metallic mold preheated at 350°C. Unnotched rectangular impact samples (1 cm × 1 cm × 5 cm) were prepared from these castings and heat treated. Samples were tested using instrumental impact testing machine. Microstructure and fracture surface were examined using Hitachi SU-8000 FESEM. The results show that the presence of Ti improves the wettability of the B4C particles and their adherence to the matrix. Repeated remelting at 730 °C applying vigorous mechanical stirring could lead to fragmentation of some of the B4C particles. Aluminum based composites exhibited better toughness compared to those obtained from 6063 based composites in all the studied conditions. The composite impact toughness was controlled by the precipitation and coarsening of hardening phase particles namely Mg2Si, Al3Zr and/or Al3Sc. Cracks in the fracture surface were observed to be initiated at the particle/matrix interfaces and propagate either through the B4C particles or through the protective layers. No complete debonding was reported due the presence of Zr/Ti/Sc rich layers which improved the particle/matrix adhesion.  相似文献   

13.
Abstract

Al-2 wt-%Cu composites were produced by gas pressure infiltration of powder beds with a high volume fraction (45 to 60 vol.-%) of angular or polygonal alumina particles. The tensile behaviour and fracture toughness of the composites were characterised in as cast, solutionised and peak aged (T6) conditions. It was shown that coarse intermetallics that are formed during solidification and located preferentially at the particle/matrix interface lead to lower toughness compared with the same composites in solutionised and T6 conditions. The particle nature and shape exert a strong influence on the properties of the composites: polygonal particles are intrinsically stronger than angular particles and yield stronger, tougher, and more ductile composites. Composite toughness variations are explained in terms of fracture micromechanisms.  相似文献   

14.
Fatigue crack initiation behaviour is investigated at room temperature in the (α2-Ti3Al and γ-TiAl) alloy. High cycle fatigue tests ranging up to 1010 cycles are carried out on the powder metallurgy (P/M) bar specimens under different loading conditions with a stress ratio of R=0.1 and R=0.5. Microstructural characterization and fracture surface analysis are also investigated by optical (OM) and scanning electron microscopy (SEM). Ti–Al alloy studied here shows two phases in microstructure (nearly refined lamellar thickness) composed of α2-Ti3Al and γ-TiAl (hereafter called γ+α2 alloys) and fracture mechanism is explained with different plastic incompatibilities between the two phases.  相似文献   

15.
The relation between microstructural characteristics and fracture behaviour of Si3N4/SiC-particle composites were evaluated for a series of materials containing a 25 vol% dispersion, with mean size in the range 7–106m. All the composites were fabricated by hot isostatic pressing without external addition of sintering aids via glass encapsulation. Quantitative image analysis techniques were employed to assess the microstructural parameters, dealing with morphology and distribution of the SiC particles. A fracture mechanics analysis based on the determination of fracture strength, toughness, work of fracture and rising R-curve behaviour provided the basis for discussion of the effectiveness of the SiC dispersions.The results of mechanical tests are compared with those obtained on the monolithic material fabricated by the same process. The microfracture mechanisms in composites are discussed by relating microstructural data, obtained by image analysis, to toughness data.  相似文献   

16.
《Composites Part A》2007,38(3):1038-1050
Crack growth resistance behaviour and thermo-physical properties of Al2O3 particle-reinforced AlN/Al matrix composites have been studied as a function of AlN volume fraction as well as Al2O3 particle size. The fracture toughness of the composites decreased with increase in vol% AlN and decrease in Al2O3 particle size. All the composites exhibited R-curve behaviour which has been attributed to crack bridging by the intact metal ligaments behind the crack tip. The Young’s modulus of the composites increased with the vol% of AlN whereas the thermal diffusivity and coefficient of thermal expansion followed a reverse trend. The composites exhibited hysteresis in thermal expansion as a function of temperature and the hysteresis decreased with decrease in metal content of the composite.  相似文献   

17.
A range of Al2O3-Cr and Al2O3-Cr/Ni composites have been made using either pressureless sintering in the presence of a graphite bed or hot pressing. Examination of the microstructures shows that they are fully dense (typically 98–99% of the theoretical density) and that the micrometre-scale metallic particles remain discrete and homogeneously dispersed in all composites. All of the hot pressed specimens had higher flexural strengths than the sintered materials. Within each processing route, the composites had slightly lower strength values than the equivalent monolithic alumina specimens. This was attributed to weak interfacial bonding. Fracture toughness behaviour was investigated using indentation and double cantilever beam methods. All of the composites were found to be tougher than the parent alumina and to show resistance-curve behaviour. For the composites, maximum fracture toughness values were 5–6 MPa m1/2 (about double the value for alumina) for process zone sizes of a few millimetres, although steady state was not reached in the limited number of specimens tested. Examination of fracture surfaces and indentation cracks showed that the toughening potential of the metal particles was not exploited to any significant extent. This was mainly due to weak metal-Al2O3 interfaces, but also because of carbon embrittlement of the metallic particles in which chromium was the major constituent.  相似文献   

18.
To investigate enhancement of matrix-dominated properties (such as interlaminar fracture toughness) of a composite laminate, two different bead-filled epoxies were used as matrices for the bead-filled epoxy/glass fibre hybrid composites. The plane strain fracture toughness of two different bead-filled epoxies have been measured using compact tension specimens. Significant increases in toughness were observed. Based on these results the interlaminar fracture toughness and fracture behaviour of hybrid composites, fabricated using bead-filled epoxy matrices, have been investigated using double cantilever beam and end notch flexure specimens for Mode I and Mode II tests, respectively. The hybrid composites based on carbon bead-filled matrix shows an increase in both G IC initiation and G IIC values as compared to a glass fibre reinforced plastic laminate with unmodified epoxy matrix. The optimum bead volume fraction for the hybrid composite is between 15% and 20%. However, the unmodified epoxy glass-fibre composite shows a higher G IC propagation value than that of hybrid composites, due to fibre bridging, which is less pronounced in the hybrids as the presence of the beads results in a matrix-rich interply region.  相似文献   

19.
Al2O3/h-BN machinable composites were fabricated by pressureless sintering at 1750 °C for 2 h in nitrogen atmosphere. The relative density of the sintered composites decreased, while the porosity increased with increasing h-BN content. By adding 20 vol.% h-BN to the composites, the porosity increased up to 16.7%. The effects of weak boundary phases (WBP), including h-BN and pores, on the microstructure, mechanical properties and machinability of the composites were investigated. The flexural strength, fracture toughness, Young's modulus and hardness of the composites decreased with increasing WBP content. When WBP content increased up to 18.8 vol.%, the composites can be machined easily by cemented carbide drills. Furthermore, the machining mechanisms of the composites were investigated using Hertzian contact tests.  相似文献   

20.
It is crucial to obtain better fracture property of particle-reinforced metal matrix composites (PRMMCs) for application in structural parts. In this study, three-point bending tests are conducted on a TiB2-reinforced steel matrix composites (SMCs) with 9% and 13% TiB2 volume fractions to understand the effect of hot rolling and particle content on fracture toughness. Results show that increasing particle content has a negative effect on the fracture toughness of SCMs as a whole. Many microcracks induced by large-size particle fracture initiate in the front of crack tip and coalesce with one another are observed, thus accelerating the main crack propagation. However, hot rolling can effectively improve the fracture toughness and hardness of SMCs with two particle contents. Particle characteristics and matrix plasticity of the SMCs are optimized by hot rolling, which finally enhances the crack propagation resistance. The present work provides guiding suggestions for effectively improving fracture properties of PRMMCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号