首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ti(C0.6,N0.4)-8Mo-xWC-25Ni (x = 0, 3, 6 and 9 wt%) cermets were synthesized under different cooling rates by vacuum sintering. The influence of WC addition and cooling rate on microstructure, magnetic and mechanical properties of the as-prepared Ti(C,N)-based cermets was investigated by using X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM) and physical property measurement system (PPMS). The results revealed that the grain size of the Ti(C,N)-based cermets became finer with WC addition. Furthermore, room-temperature saturation magnetization (Ms), remanence (Mr) and Curie temperature (Tc) of the Ti(C,N)-based cermets initially decreased with increasing WC content, followed by a gradual increase. Cermets bacame paramagnetic at x = 6 under the cooling rate of 2 °C/min, x = 6 and 9 under the cooling rate 35 °C/min, respectively. The decrease in magnetic properties could be ascribed to the enhanced solid solubility of alloy elements in Ni-based binder phase. Moreover, the hardness and transverse rupture strength (TRS) of the Ti(C,N)-based cermets initially increased and followed by a gradual decrease, whereas the fracture toughness initially decreased followed by an increase with increasing WC content. At the same value of x, the Ti(C,N)-based cermets exhibited better magnetic and mechanical properties at the cooling rate of 35 °C/min than that at the cooling rate of 2 °C/min, which could be attributed to the grain refinement strengthening and solid-solution strengthening of the binder phase.  相似文献   

2.
采用真空烧结工艺制备Ti(C,N)基金属陶瓷,测定了材料的力学性能。结果表明,其力学性能与未加纳米粉的金属陶瓷相比,硬度略有升高,但横向断裂韧性提高了近一倍。断口形貌和微观组织分析表明:金属陶瓷的断口形貌与其强韧性有着密切的关系。纳米粉的加入降低了原始粉末的平均粒度,使得金属陶瓷硬质相的粒度降低,减小了晶粒间的平均自由程。镶嵌于大颗粒环形相和弥散分布于粘结相中的细小硬质相颗粒,对裂纹的形成和扩展起到阻碍作用,会使金属陶瓷因裂纹扩展途径发生偏转而增韧。  相似文献   

3.
Four series of Mo2FeB2 based cermets with different carbon contents were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX) and X-ray diffractometry (XRD). The transverse rupture strength (TRS), hardness (HRA) and fracture toughness (KIC) were also measured. The free carbon present in the green compact significantly decreased the grain size; however, a high carbon content resulted in the formation of graphite phase and Fe3C phase. An increasing carbon content promoted the dissolution of Mo in the binder phase. In addition, the binder phase varied from ferrite to martensite with increasing carbon content. The highest hardness was found for the cermets with 0.5 wt.% carbon addition, whereas the cermets without carbon addition exhibited the maximum TRS and fracture toughness.  相似文献   

4.
The influence of different sintering processes, including vacuum sintering, vacuum sintering followed by HIP and sintering-HIP, on the microstructure and properties of sub-micron Ti(C,N) cermets with various binder contents was studied. Image analysis based on back-scattered electrons image observations was used to determine the morphologic and structural characteristics. Transverse rupture strength(TRS), hardness, fracture toughness were measured and TRS data were treated by Weibull statistics further. It is shown that a very significant improvement in TRS can be obtained by HIP or sintering-HIP treatment for the alloys with lower and middle binder content at the controlled cooling rate, but the effect is not obvious for the alloys with higher binder content. HIP is also helpful for improving the hardness of sub-micron Ti(C,N) cermets, however, but can lower the fracture toughness. The varia-tion of these properties was interpreted in terms of the difference in morphologic and structural characteristics.  相似文献   

5.
Four series of Mo2FeB2 based cermets with different carbon contents were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX) and X-ray diffractometry (XRD). The transverse rupture strength (TRS), hardness (HRA) and fracture toughness (KIC) were also measured. The free carbon present in the green compact significantly decreased the grain size; however, a high carbon content resulted in the formation of graphite phase and Fe3C phase. An increasing carbon content promoted the dissolution of Mo in the binder phase. In addition, the binder phase varied from ferrite to martensite with increasing carbon content. The highest hardness was found for the cermets with 0.5 wt.% carbon addition, whereas the cermets without carbon addition exhibited the maximum TRS and fracture toughness.  相似文献   

6.
碳含量对Ti(CN)基金属陶瓷力学性能的影响   总被引:1,自引:0,他引:1  
张洁尧 《硬质合金》2003,20(3):154-156
研究了Ti(CN)基金属陶瓷的碳含量对其物理力学性能的影响。结果表明 ,在一定范围内 ,随着碳含量的减少 ,Ti(CN)基金属陶瓷的矫顽磁力、钴磁和硬度降低 ;而抗弯强度则明显增高。  相似文献   

7.
烧结气氛对Ti(CN)基金属陶瓷组织和性能的影响   总被引:3,自引:0,他引:3  
用X射线衍射、背散射扫描电镜及能谱仪等分析手段研究了烧结气氛(真空、N2、Ar)对不同成分TiC基和Ti(CN)基金属陶瓷合金显微组织和性能的影响.金属陶瓷在N2和Ar中烧结后,合金碳含量比在真空中烧结的碳含量低0.5%左右;在N2中烧结后,合金的氮含量提高了0.5%左右.环状结构心部可以是以钨等重金属元素为主要成分的碳化物,也可以是以钛为主要成分的碳化物和碳氮化物.环状结构为金属元素含量和分布不同的(Ti,W,Ta,Mo,Co,Ni)(C,N)固溶体,粘结相是与Ti,W,Ta,Mo,C,N等元素有不同溶解度的钴镍固溶体.真空烧结后组织结构比较均匀,合金的性能最好.在Ar、N2中烧结后,气氛中的氧和氮参加烧结反应,影响合金成分碳氮平衡,在合金表面形成壳层结构,产生表面缺陷,合金的密度、显微硬度、抗弯强度均有比较大的降低;N2气氛影响更大.  相似文献   

8.
本文以(Ti,W,Mo,Nb)(C,N)-(Co,Ni)基金属陶瓷材料为研究对象,研究烧结温度对金属陶瓷的成分、微观组织和力学性能的影响,初步探讨成分、微观组织与材料强度的关系。研究结果表明:烧结温度对(Ti,W,Mo,Nb)(C,N)-(Co,Ni)基金属陶瓷组织特征有显著的影响;合金的总碳(Ct%)随着烧结温度的提高而降低,当烧结温度达到1490℃时,合金总碳的急剧降低,导致合金组织中出现脱碳相(η相),从而使得合金的硬度(HV30) 、断裂韧性(KIC)和抗弯强度(TRS)降低;1470℃烧结温度下,(Ti,W,Mo,Nb)(C,N)-(Co,Ni)基金属陶瓷合金的硬度(HV30) 、断裂韧性(KIC)和抗弯强度(TRS)的匹配最佳,表现为在实际应用工况下的综合切削性能最优。  相似文献   

9.
研究了二次颗粒尺寸和添加WC对双结构金属陶瓷组织和力学性能的影响,结果表明二次颗粒均匀地分布在基体中,随着添加WC含量的增加,组织中白芯灰壳结构和无芯结构增加。组织中发现了一种新的四层复合结构的硬质相。随着二次颗粒尺寸的增加,材料的断裂韧性提高,但抗弯曲度和硬度下降,而提高WC加入量,断裂韧性和抗弯曲度提高,但硬度有所下降。更高的断裂韧性主要归功于裂纹的分叉、桥接、偏转、微裂纹以及二次颗粒的拔出效应。  相似文献   

10.
X-ray diffractometer (XRD) and scanning electron microscope (SEM) were used to observe and investigate the microstructure and fracture morphology of Ti(C,N)-based cermets added with NiTi alloy powder. A new ceramic phase is found with the structure of gray core, black inner rim, noncontinuous white inner rim and continuous gray outer rim. The fracture toughness and the transverse rupture strength have a distinct trend to increase with the increase of NiTi powder content in Ti(C,N)-based cermets, while the hardness has the opposite trend. Grain refinement and the increase of metallic phase are the dominant strengthening and toughening mechanisms. Additionally, the crack deflection and bridging may play an active role in improving the properties, as well as the special structure of large metallic binder containing many small ceramic particles. In cermets with a higher content of NiTi powder, the microcrack and the crack closure effect induced by martensitic transformation are advantageous to the mechanical properties.  相似文献   

11.
In this work, self-lubricating Ti(C,N)-based cermets were prepared by solid carburization. The sintered cermets were wrapped by carburizing agent and sintered again at 1440 °C with different time. The microstructure and composition of cermets were studied. The wear behavior of cermets containing graphite phase was also evaluated using a block-on-ring tribometer. The results showed that the carbon content increased gradually in binder phase with carburizing time. When the carburizing time was 3 h, the carbon got saturated in binder phase. When the carbon content exceeded the solubility in the binder, excessive carbon precipitated and formed graphite phase. Uniformly distributed graphite clusters formed in cermets after carburization for 4 h. The graphite clusters consisted of flocked graphite particles. With the carburizing time extended to 5 h, the graphite clusters became large and some of them interlaced together. Besides, the wear results indicated that the volume loss of cermets containing graphite phase was half of that without graphite due to the formation of smooth tribofilm on the worn surface of cermets.  相似文献   

12.
Effect of Mo and Mo2 C on the microstructure and properties of Ti(C,N)-based cermets was investigated in this article. The results have indicated that the weight percentage of Mo from 5 to 10 can reduce Ti(C,N) grain diameter and thickness of the rim, and Ti(C,N) grain can be wetted by Ni-Cu-Mo liquid so as to get small contiguity of Ti(C,N) grain. In that way, the transverse rupture strength of Ti(C,N)-based cermets has reached 1800-1900 MPa; the fracture toughness has been due to 16-18 MPa.m1/2. But 15 wt pct Mo was not more effective on Ti(C,N)-based cermets, because the thickness of the rim becomes larger. In the circumstance of Mo2 C, 5 wt pct Mo2 C was good for microstructure and properties of Ti(C,N)-based cermets, but 11 wt pct Mo2C has resulted in larger contiguity of Ti(C,N) grain and big Ti(C,N) grain diameter so as to reduce transverse rupture strength and fracture toughness. So that, the effect of Mo on Ti(C,N)-based cermets is better than Mo2C.  相似文献   

13.
于超  刘宁  章晓波 《硬质合金》2007,24(4):193-197
采用粉末冶金方法真空烧结制备了添加Ni-Ti形状记忆合金的Ti(C,N)-Co系金属陶瓷,研究了Ni-Ti合金对Ti(C,N)基金属陶瓷显微组织和力学性能的影响。结果表明:未加Ni-Ti合金的Ti(C,N)基金属陶瓷的显微组织表现为经典的黑芯-灰壳组织,陶瓷相多为球形;而加入Ni-Ti后的金属陶瓷随着Ni-Ti加入量的增多,组织逐渐细化,出现了多边形的陶瓷相,陶瓷相与粘结相的界面呈现直线关系。同时,金属陶瓷的抗弯强度和断裂韧性随着Ni-Ti合金加入量的增多有明显的提高,而硬度基本保持不变;Ni-Ti合金的加入量为15wt%时金属陶瓷获得最好的力学性能。  相似文献   

14.
烧结工艺对Ti(C,N)基金属陶瓷性能的影响   总被引:1,自引:0,他引:1  
采用粉末冶金法制备Ti(C,N)基金属陶瓷,利用金相图像分析系统和扫描电镜观察陶瓷表面孔洞和微观组织形貌,分析了热处理和烧结气氛工艺对不同碳氮比的Ti(C,N)基金属陶瓷性能的影响.结果表明:真空烧结后的热处理工艺可使Ti(C,N)基金属陶瓷的横向断裂强度提高10%以上,硬度也有不同程度的提高,其中Ti(C0.5 N0.5)基金属陶瓷适合采用低压工艺处理,Ti(C0.7 N0.3)基金属陶瓷适合采用热等静压工艺处理.氮气气氛烧结中,Ti(C0.5 N0.5)基金属陶瓷在氮分压值为2kPa时的横向断裂强度达到最大值,而硬度变化不明显,这可归因于合适的氮分压阻碍了金属陶瓷内氮化物的分解,提高了材料的致密度,细化了晶粒组织.  相似文献   

15.
Four cermets of composition TiC-10TiN-16Mo-6.5WC-0.8C-0.6Cr3C2-(32 − x)Ni-xCr (x = 0, 3.2, 6.4 and 9.6 wt%) were prepared, to investigate the effect of the partial substitution of Cr for Ni on densification behavior, microstructure evolution and mechanical properties of Ti(C,N)-Ni-based cermets. The partial substitution of Cr for Ni decreased full densification temperature, and the higher the content of Cr additive was, the lower full densification temperature was. The partial substitution of Cr for Ni had no significant effect of the formation of Mo2C and Ti(C,N) and the dissolution of WC, and however, it had a significant effect on the dissolution of Mo2C. Cr in Ni-based binder phase diffused into undissolved Mo2C to form (Mo,Cr)2C above 1000 °C at 6.4-9.6 wt% Cr additive, and a small amount of (Mo,Cr)2C did not dissolve after sintering at 1410 °C for 1 h at 9.6 wt% Cr additive. In the final microstructure, Cr content in Ni-based binder phase increased with increasing the content of Cr additive, and however, regardless of the content of Cr additive, coarse Ti(C,N) grains generally consisted of black core, white inner rim and grey outer rim, and fine Ti(C,N) grains generally consisted of white core and grey rim. The partial substitution of Cr for Ni increased hardness and decreased transverse rupture strength (TRS). Ni-based binder phase became hard with increasing the content of Cr additive, therefore resulting in the increase of hardness and the decrease of TRS. TRS was fairly low at 9.6 wt% Cr additive, which was mainly attributed hardening of Ni-based binder phase and undissolved (Mo,Cr)2C.  相似文献   

16.
The present work investigated the effects of secondary carbides (Mo2C\WC\TaC\NbC) on the erosion-corrosion behavior of Ti(C,N)-based cermets. The results indicate that the erosion-corrosion resistance of Ti(C,N)-based cermets is enhanced in the order of NbC, TaC, WC and Mo2C addition. The contribution of erosion to the erosion-corrosion of Ti(C,N)-based cermets is much more significant than that of corrosion, and it increases with the decreased mechanical properties. The synergistic effect plays a dominant role in the degradation of Ti(C,N)-based cermets in erosion-corrosion conditions. There are two modes to ceramic phase degradation in erosion conditions: large ceramic grains are prone to deterioration through crack initiation and propagation  grain fracture  fragment removal; finer ceramic grains trend to be pulled out after the deterioration of binder and interface. The binder loss is determined by the corrosion resistance of binder, the erosion resistance of binder and the erosion resistance of ceramic phase.  相似文献   

17.
通过静态浸泡腐蚀和动电位极化两种方法,研究了Mo2C对Ti(C,N)基金属陶瓷在NaOH溶液中腐蚀性能的影响。实验结果表明:Ti(C,N)基金属陶瓷的耐蚀性明显优于WC-Co硬质合金;添加Mo2C可以大幅度提高Ti(C,N)基金属陶瓷的机械性能,硬度从91.2到94.0 HRA和抗弯强度从930到1 350 MPa,但会降低金属陶瓷的耐蚀性能;由于Mo2C的加入,会使金属陶瓷的动电位极化曲线出现两个钝化区,但是两个钝化区域的电流均未达到真正的钝化电流(10-5A/cm2),因而这些钝化现象均为伪钝化;在经动电位极化后的试样表面,粘结相Ni和白色的内环相均会被腐蚀,其中内环相为富Mo的(Mo,Ti)(C,N)固溶体,其耐腐蚀性较未溶的Ti(C,N)芯更差。随着Mo2C添加量的提高,内环形相的厚度随之会增加,从而降低了Ti(C,N)基金属陶瓷的耐蚀性能。  相似文献   

18.
Ti(C,N)基金属陶瓷抗弯强度的研究   总被引:1,自引:1,他引:0  
研究了提高Ti(C,N)基金属陶瓷抗弯强度的方法。采用改变粘结相成分、进行低压烧结及快冷处理来制备Ti(C,N)基金属陶瓷。试验发现,粘结相成分对材料的强度有很大的影响,提高Ni/Ni+Co的比例可以提高材料的强度,当然,在实际应用中还要考虑对其它性能的综合影响;低压烧结和快冷处理都可以有效的提高Ti(C,N)基金属陶陶的抗弯强度。  相似文献   

19.
The effect of vanadium carbide (VC) addition on the sinterability and the microstructure of ultrafine Ti(C, N)-based cermets consolidated through spark plasma sintering (SPS) was systematically investigated using optical microscope, scanning electron microscope (SEM) with X-ray energy dispersive spectrometer (EDS), X-ray diffractometer (XRD) and transmission electron microscope (TEM). Our results reveal that the addition of VC increases the porosity of sintering body and depresses the sinterability of Ti(C, N)-based cermets. It is also found that the VC addition has a significant influence on the microstructure of ultrafine Ti(C, N)-based cermets, which inhibits the dissolution of titanium-containing compounds and the formation of inner rim phase and outer rim phase, thus preventing from grain growth. Owing to the depressed dissolution and precipitation, nitrogen liberation is mitigated, therefore resulting in less amount of graphite phase in the samples. In substance, VC changes the solubility of metallic elements in the binder, which makes more elements of Mo and W to be reserved in the binder and thus greatly decreases the content of titanium dissolved into the binder. The re-building solubility rule determines the development of phases and microstructure.  相似文献   

20.
采用粉末冶金法制备了Ni3Al做粘结相的Ti(C,N)基金属陶瓷,研究了添加不同含量Ni3Al粘结相的金属陶瓷的力学性能和显微组织并与Ni做粘结相的金属陶瓷进行了对比。结果表明,Ni3Al作粘结相的金属陶瓷综合力学性能总体上不如Ni做粘结相的金属陶瓷,随着金属陶瓷中Ni3Al含量的增加,其洛氏硬度值不断下降,而抗弯强度和断裂韧性却不断增加;显微组织分析表明,Ni3Al做粘结相的金属陶瓷同样具有芯环结构,Ni3Al可以控制环形相的厚度,抑制晶粒异常长大,使硬质相芯相棱角圆润。Ni3Al含量为30wt%左右的金属陶瓷能够兼顾硬度和抗弯强度等力学性能,此时的主要力学性能指标为:抗弯强度1 045±80 MPa,洛氏硬度HRA89.7±0.25,断裂韧性KIC为14.26 MPa·m1/2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号