首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
作为结构功能一体化材料,多孔钛在众多工业领域具有广泛的应用前景,已成为近年来十分活跃的研究方向。简要回顾了多孔钛的研究历史,重点介绍了多孔钛的制备方法与孔结构,并对多孔钛的渗透性能、力学性能和耐腐蚀性能以及主要的商业应用进行了介绍。众多研究和应用表明,多孔钛的性能与功能强烈依赖于孔结构,不同方法制备多孔钛的孔结构可以归纳为均一孔结构、双峰孔结构、梯度孔结构、蜂窝结构和闭孔结构5种类型。除孔结构外,与致密钛合金一样,多孔钛的力学性能和耐腐蚀性能还对间隙元素C,N,O敏感,制备过程中应加以控制。与基于粉末固态扩散机制的传统制备技术相比,增材制造技术由于可以获得任意形式的孔结构,在多孔钛未来的发展和应用中,将呈现出越来越重要的作用。  相似文献   

2.
采用粉末冶金方法制备了多孔高氮奥氏体不锈钢并研究其力学性能和耐腐蚀性能。结果表明,高温气固渗氮能促进双相不锈钢向奥氏体不锈钢的转变,在其显微组织中出现了细条状和颗粒状CrN相析出物。随着造孔剂含量的提高孔隙率随之提高,而力学性能和耐腐蚀性能降低。与普通的多孔不锈钢相比,这种多孔高氮奥氏体不锈钢的力学性能更加优越,源于N的固溶强化和CrN等析出物的强化机制。随着孔隙率的提高多孔高氮奥氏体不锈钢的腐蚀倾向和腐蚀速率逐渐增大,造孔剂含量(质量分数)为10%的试样具有最佳的耐腐蚀性能。提高烧结温度有利于烧结块体的致密化,使腐蚀速率明显下降。  相似文献   

3.
以生物医用球形雾化钛粉为原料,碳酸氢铵做造孔剂,采用放电等离子烧结(SPS)技术制备了生物医用多孔钛块体材料。采用XRD、SEM分别对所制备的多孔钛的物相组成、微观形貌进行分析,并研究了多孔钛的力学性能及成骨细胞在其表面的粘附生长情况。结果表明:通过调节造孔剂添加量、控制烧结工艺可制备孔隙率为50.3%~70.5%、孔径为100~300μm的多孔钛,其力学性能(抗压强度为24.40~68.96MPa、弹性模量为1.010~1.287GPa)与人体松质骨相匹配。与SD大鼠成骨细胞的联合培养结果表明,该材料的粗糙表面和多孔结构可粘附生长成骨细胞,具有良好的生物相容性。  相似文献   

4.
生物医用多孔钛及钛合金的研究进展   总被引:2,自引:1,他引:1  
多孔钛和钛合金因具有优异的生物相容性、与人骨力学性能匹配良好、可作为植入物材料的优点,而引起了广泛关注。介绍了医用多孔钛及钛合金的产生背景,综述了近几年国内外对生物医用多孔钛及钛合金的制备方法、微结构特征与性能的关系、表面处理的研究进展,并展望了生物医用多孔材料的发展。  相似文献   

5.
磷酸钙基生物陶瓷多孔支架是临床中实现骨缺损再生修复的常用骨移植物。光固化3D打印技术以其优异的打印精度和复杂结构成形特性能够精确地控制支架孔尺寸、孔形状、孔连通率,在制备生物陶瓷多孔支架领域展现出巨大的应用潜力。然而,利用光固化3D打印技术制备磷酸钙基生物陶瓷多孔支架仍面临亟需克服的挑战,如缺乏性能优异的磷酸钙基陶瓷打印浆料、打印及后处理工艺不成熟、制备的磷酸钙基陶瓷多孔支架的性能还有待提升。本文首先介绍了几种常用的光固化3D打印技术基本原理与特征,然后从3D打印成形工艺、力学性能、生物活性、支架结构及功能化等方面系统探讨了光固化3D打印技术在制备磷酸钙基生物陶瓷多孔支架领域的研究进展及存在的问题,最后展望了光固化3D打印磷酸钙基生物陶瓷多孔支架的发展趋势和突破点,为利用光固化3D打印技术制备成本低、综合性能优异的磷酸钙基生物陶瓷多孔支架提供参考。  相似文献   

6.
刘辉  憨勇 《中国材料进展》2012,31(5):40-56,39
医用多孔金属材料,特别是多孔钛及钛合金能够提供与人体骨组织相匹配的力学性能,并促进骨组织长入以提高其与骨的固定度,在人体硬组织修复与替换方面具有广泛的应用前景。重点围绕多孔钛及钛合金的制备方法及适用于其复杂孔隙结构的表面生物活化方法,综述了各种方法在多孔钛及钛合金上的应用现状。目前适用于多孔钛及钛合金制备的技术主要有粉末冶金法、钛纤维烧结法、自蔓延高温合成法、选区电子束熔化技术和选区激光熔化技术,适用于多孔钛及钛合金表面生物活化的技术主要有溶胶凝胶法、仿生矿化法、电化学沉积法和微弧氧化法。多孔钛及钛合金的力学相容性和表面生物活性需要同时满足临床要求,才能进一步扩大其在医学领域的应用范围。  相似文献   

7.
利用电化学方法制备了多孔硅,利用显微拉曼光谱法测量多孔硅样品的热导率和多孔硅中的残余应力,利用纳米压入测量仪测量多孔硅显微硬度与弹性模量.研究了多孔硅绝热性能和力学性能与微观结构的关系,认为通过控制制备条件可以得到绝热性能和力学性能满足MEMS热敏传感器结构性能要求的多孔硅.  相似文献   

8.
多孔支架是组织工程应用中的关键环节,类似细胞外基质的作用,支撑细胞的粘附和随后细胞向组织的衍化。虽然目前已采用多种制备技术研发出大量的多孔支架,但是多孔生物材料支架的制备和性能优化,仍然是组织工程支架领域的研究热点。结合实验室工作,综述了多种制备不同类型多孔结构生物材料支架的制备技术,主要包括颗粒和纤维堆积型支架、泡沫浸渍法支架和颗粒制孔支架等的制备技术,并阐述了这些制备技术对多孔结构支架的孔结构、贯通性和力学性能的改善效果。其目的旨在提供满足组织工程需求的多孔生物材料支架。  相似文献   

9.
提出了多孔钛制备的新方法,先采用占位体法制备出具有一定孔结构的二氧化钛,而后通过钙蒸气还原、浸出,获得多孔钛。借助X射线衍射、扫描电镜、X射线能谱仪、压汞仪等检测手段分别考察了造孔剂种类、造孔剂添加量、烧结温度、升温速率等对多孔二氧化钛孔结构的影响;并且通过钙蒸气还原制备出了具有一定孔结构的多孔钛。实验结果表明:添加不同种类造孔剂制备出的多孔二氧化钛的孔隙率大小的顺序为:柠檬酸淀粉石墨;烧结温度区间在800℃~1100℃时,样品的孔隙率呈现先上升后下降的趋势;淀粉为造孔剂时,获得更加均匀的孔分布;将所制备的多孔二氧化钛还原,所得到的多孔钛具有一定孔隙结构,并且随着多孔二氧化钛孔隙率的增大,所得多孔钛表面孔增多,多孔钛结构更加疏松。  相似文献   

10.
电子束快速成形技术制备医用金属多孔材料研究进展   总被引:1,自引:1,他引:0  
介绍了电子束快速成形方法及其在制备生物医用金属多孔材料方面的优势。从电子束快速成形生物多孔材料中的孔结构设计,包括孔结构的力学和生物相容性设计、梯度孔结构设计,个体化金属植入体制备及多孔植入体的表面改性和临床性能评估几个方面阐述了电子束快速成形技术在国内外的研究进展情况。最后简单评述了电子束快速成形技术在制备生物医用材料中存在的不足,并展望了未来的研究趋势。  相似文献   

11.
Recent advancements in additive manufacturing (or rapid prototyping) technologies allow the fabrication of end-use components with defined porous structures. For example, one area of particular interest is the potential to modify the flexibility (bending stiffness) of orthopedic implants through the use of engineered porosity (i.e., design and placement of pores) and subsequent fabrication of the implant using additive manufacturing processes. However, applications of engineered porosity require the ability to accurately predict mechanical properties from knowledge or characterization of the pore structure and the existence of robust equations characterizing the property–porosity relationships. As Young’s modulus can be altered by variations in pore shape as well as pore distribution, numerous semi-analytical and theoretical relationships have been proposed to describe the dependence of mechanical properties on porosity. However, the utility and physical meaning of many of these relationships is often unclear as most theoretical models are based on some idealized physical microstructure, and the resulting correlations often cannot be applied to real materials and practical applications. This review summarizes the evolution and development of relationships for the effective Young’s modulus of a porous material and concludes that verifiable equations yielding consistently reproducible results tied to specific pore structures do not yet exist. Further research is needed to develop and validate predictive equations for the effective Young’s modulus over a volume porosity range of 20–50 %, the range of interest over which existing equations, whether based on effective medium theories or empirical results, demonstrate the largest disparity and offers the greatest opportunity for beneficial modification of bending stiffness in orthopedic applications using currently available additive manufacturing techniques.  相似文献   

12.
Despite the fact that additive manufacturing (AM) techniques allow to manufacture complex porous parts with a controlled architecture, differences can occur between designed and as-produced morphological properties. Therefore this study aimed at optimizing the robustness and controllability of the production of porous Ti6Al4V structures using selective laser melting (SLM) by reducing the mismatch between designed and as-produced morphological and mechanical properties in two runs. In the first run, porous Ti6Al4V structures with different pore sizes were designed, manufactured by SLM, analyzed by microfocus X-ray computed tomography (micro-CT) image analysis and compared to the original design. The comparison was based on the following morphological parameters: pore size, strut thickness, porosity, surface area and structure volume. Integration of the mismatch between designed and measured properties into a second run enabled a decrease of the mismatch. For example, for the average pore size the mismatch decreased from 45% to 5%. The demonstrated protocol is furthermore applicable to other 3D structures, properties and production techniques, powder metallurgy, titanium alloys, porous materials, mechanical characterization, tomography.  相似文献   

13.
杨建明  汤阳  顾海  刘永加  黄大志  陈劲松 《材料导报》2018,32(15):2672-2683
多孔结构材料具有优异的物理、力学性能,应用领域广泛。目前,已开发出的多孔结构的制备方法种类繁多,然而仅少数可实现批量生产,大多数方法工艺较为复杂,并且在制备过程中难以对多孔结构进行有效控制,以致所得多孔结构仍存在某些性能方面的不足。3D打印技术的发展与应用为多孔结构的制备带来了新的途径,所制备的多孔结构可同时具备宏观孔隙和微观孔隙,其骨架及宏观孔隙可以根据需要进行设计。可用于制备多孔结构的3D打印方法主要有利用激光能量的选择性激光烧结法(SLS)、选择性激光熔化法(SLM)和激光近净成形法(LENS)等方法,利用电子束能量的电子束熔化(EBM)法,喷射粘结剂的三维印刷(3DP)法,材料挤出类中的熔融沉积成形(FDM)法和三维浆丝沉积(3DF)法,以及间接3D打印法。近年来,国内外学者对采用这些方法制备多孔结构开展了一定的研究,以期找到适合具体情况的3D打印方法及相应合理的工艺规范,从而提高制件的性能。采用SLS、SLM和LENS法,通过控制激光扫描轨迹和粉末烧结程度可以获得材料的宏观和微观孔隙。SLS法可制备的多孔结构材料种类较广,SLM和LENS法主要用于制备金属多孔结构。EBM法与SLM法类似,但EBM法需要在真空环境下成形,可用于制备Ti等活泼金属材料。适用于3DP法的粉末材料种类更广,可选用不同的粘结剂和相应的后处理方法,其工艺灵活性大。FDM法一般用于低熔点热塑性材料,通过熔融挤出而堆积成宏观多孔结构。3DF法以粉末浆料的形式挤出成形,适用的材料种类比FDM法广,得到的结构具有宏观和微观孔隙。FDM和3DF法的打印精度和孔隙尺寸受喷嘴打印能力的限制。间接法先利用某种便捷的3D打印方法制备出多孔结构原模,再将该原模经粉末冶金、浇注等方法制得所需的多孔结构材料,这样可以避免3D打印直接制备某些材料的多孔结构在结构特征方面受到的限制。上述这些方法中,由于激光和电子束的能量集中,故SLM和EBM法制备的多孔结构相对于其他方法更精细。3D打印制备多孔结构时孔隙的形成机理可以总结为:制件内打印轨迹未到达的区域形成的宏观设计孔隙、制件骨架内的粘结剂被加热分解或被溶解而去除后形成的孔隙、气体溶解在烧结过程中的熔融金属内形成的孔隙、激光扫描熔迹之间形成的孔隙、粉末颗粒间堆积空隙形成的孔隙。本文对3D打印制备多孔结构的研究与应用现状进行了综述,概述了制备多孔结构的几种主要的3D打印方法,总结了其孔隙的形成机理,介绍了3D打印多孔结构的应用现状,指出了未来需要开展的研究。  相似文献   

14.
Processing and mechanical properties of autogenous titanium implant materials   总被引:19,自引:0,他引:19  
Pure titanium and some of its alloys are currently considered as the most attractive metallic materials for biomedical applications due to their excellent mechanical properties, corrosion resistance, and biocompatibility. It has been demonstrated that titanium and titanium alloys are well accepted by human tissues as compared to other metals such as SUS316L stainless steel and Co–Cr–Mo type alloy. In the present study, highly porous titanium foams with porosities 80% are produced by using a novel powder metallurgical process, which includes the adding of the selected spacers into the starting powders. The optimal process parameters are investigated. The porous titanium foams are characterized by using optical microscopy and scanning electron microscopy. The distribution of the pore size is measured by quantitative image analyses. The mechanical properties are investigated by compressive tests. This open-cellular titanium foams, with the pore size of 200–500 m are expected to be a very promising biomaterial candidates for bone implants because its porous structure permits the ingrowths of new-bone tissues and the transport of body fluids.  相似文献   

15.
The porous titanium with a channel-like pore structure fabricated by infiltration casting followed by selectively dissolving the precursor woven three dimensional(3 D) structure technique was comprehensively investigated by means of mechanical tests, in vitro and in vivo evaluation. Such porous structure exhibited superiority in compressive, tensile strength and osseointegration. At 40% porosity, the average compressive and tensile strength reached about 145 MPa and 85 MPa, which was superior to that of other porous titanium, e.g., Selective Laser Melting or powder sintered ones, and was comparable to that of the human cortical bone. Without any bioactive surface treatment, this porous titanium exhibited good cell adhesion, rapid cell proliferation and excellent osseointegration. Based on the study, the 0.4 mm pore size resulted in the most rapid cell proliferation and the maximal BV/TV ratio and trabecular bone number of the new bone that ingrew into the porous titanium. To balance the excellent osseointegration and adequate mechanical properties, the optimal structural parameters were 0.4 mm pore size with40% porosity. This porous titanium is very promising for orthopedic applications where compressive and tensile load-bearing is extremely important.  相似文献   

16.
17.
High-quality magnesium foams were fabricated by an infiltration technology using tailor-made salt–flour mixture space holders. The pore structures and mechanical properties of space holder particles as well as the resultant foam production with spherical pores were characterized in the present study. The particles after high-temperature sintering dissolved rapidly in water due to their porous structures, guaranteeing the weak corrosion and high-purity of magnesium foams. The spherical pores foams exhibited usual stress–strain behaviors and nearly isotropic properties. The yield strengths of the foams increased with the decrease of sample porosity, and the relative mechanical properties of foams were mostly dependent on their relative densities, which obeyed a power law relation. Moreover, porous magnesium materials with tunable pore structures could be fabricated owing to the flexible forming features of salt–flour mixture, showing great application prospects in bone implant material field.  相似文献   

18.
Because of its light weight and high strength, bamboo is used in many applications around the world. Natural bamboo is built from fiber-reinforced material and exhibits a porous graded architecture that provides its remarkable mechanical performance. This porosity gradient is generated through the unique distribution of densified vascular bundles. Scientists and engineers have been trying to mimic this architecture for a very long time with much of the work focusing on the effect of fiber reinforcement. However, there still lacks quantitative studies on the role of pore gradient design on mechanical properties, in part because the fabrication of bamboo-inspired graded materials is challenging. Here, the steep and continuous porosity gradient through an ingenious cellular design in Moso bamboo is revealed. The effect of gradient design on the mechanical performance is systematically studied by using 3D-printed models. The results show that not only the magnitude of gradient but also its continuity have a significant effect. By introducing a continuous and large gradient, the maximum flexural load and energy absorption capability can be increased by 40% and 110% when comparing to the structure without gradient. These bamboo-inspired cellular architectures can offer efficient solutions for the design of damage tolerant engineering structures.  相似文献   

19.
Materials with aligned porous structures have broad potential in applications such as organic electronics, microfluidics, and tissue engineering. Materials of this type can be fabricated using techniques such as microfabrication, soft lithography, and photolithography. Directional freezing is a cheap, simple, and novel route to prepare aligned porous materials in the form of 2D surface patterns or 3D monolithic structures. A solvent—typically water but also organic solvents or carbon dioxide—is frozen unidirectionally and the pore structure is templated from the aligned solvent crystals that are formed. These methods can produce complex composite materials with a range of aligned pore architectures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号