首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
胡鸿飞  高雪  傅德民  毛乃宏 《电子学报》2002,30(12):1772-1775
相位恢复是无相位近场测量和全息诊断的关键技术.本文考虑探头修正,构造加权目标泛函,给出避免局部极值的无相位测量条件.为提高计算效率和工程实用性,对Fletcher-Reeves共轭梯度法采取再开始技术、FFT算法和构造迭代初值等改进措施.数值模拟表明,应利用有关天线和近场测量的先验信息,选取尽量少的搜索变量.实验结果验证了本文方法的正确性和有效性.  相似文献   

2.
A phaseless cylindrical near-field/far-field transformation algorithm is described. The technique uses the measurement of two near-field intensity distributions and knowledge of the antenna geometry. Verification measurements are presented for a waveguide array.<>  相似文献   

3.
Near-field measurements typically require both amplitude and phase information to correctly predict the far-field. Unfortunately, there are situations in which the phase data is not available or impractical to obtain. That is why there has been a need for the development of phaseless techniques. Up until now, a number of remarkable solutions to this problem have been proposed by the researcher in different disciplines. Unfortunately, the complete vectorial representation of the field is not investigated in depth. The evaluated cases are usually linearly polarized and only the dominant polarization is investigated while the cross polarized field is usually neglected. This paper addresses the polarization issue in a two-component approach and then proposes a solution to the problem. A searching mechanism, for the incorporation of an appropriate initial guess, is integrated into the well-known, iterative Fourier technique (plane-to-plane) to enhance the algorithm response. Then, using two sets of measured orthogonal information data gathered by two linearly and orthogonally polarized probes, it is shown that with the aid of only a single point amplitude measurement, the polarization characteristics of the antenna can be extracted up to an inherent ambiguity of the right- and left-handedness. In order to have an assessment of the applicability of the proposed method, both linearly and circularly polarized antennas are simulated. Additionally, the method of extracting the polarization from the phaseless data is also verified through a bi-polar near-field measurement.  相似文献   

4.
An integrated probe performing phaseless near-field measurements on a polar surface is presented. The unknown near-field phase is computed by an interferometric technique used in conjunction with the minimisation of a suitable functional. A microstrip patch antenna for synthetic aperture radar (SAR) applications is considered to validate the method  相似文献   

5.
Microwave diagnosis of antennas is considered as a viable tool for the determination of reflector surface distortions and location of defective radiating elements of array antennas. A hybrid technique based on the combination of the spherical near-field measurements and holographic metrology reconstruction is presented. The measured spherical near-field data are first used to construct the far-field amplitude and phase patterns of the antenna on specified regularized u-v coordinates. These data are then utilized in the surface profile reconstruction of the holographic technique using a fast-Fourier-transform (FFT)/iterative approach. Results of an experiment using a 156-cm reflector antenna measured at 11.3 GHz are presented for both the original antenna and the antenna with four attached bumps. Several contour and gray-scaled plots are presented for the reconstructed surface profiles of the measured antennas. The recovery effectiveness of the attached bumps has been demonstrated. The hybrid procedure presented is used to assess the achieved accuracy of the holographic reconstruction technique because of its ability to determine very accurate far-field amplitude and phase data from the spherical near-field measurements  相似文献   

6.
Recent investigations have demonstrated that uniform sampling techniques can be effectively applied for construction of far-field patterns of antennas. There are, however, many circumstances for which it may not be practical to directly utilize uniform sampling techniques. A two-dimensional sampling technique which can employ irregularly (nonuniformly) spaced samples (amplitude and phase) in order to generate the complete far-field patterns is presented. The technique implements a matrix inversion algorithm which depends only on the nonuniform sampled data point locations and with no dependence on the actual field values at these points. A powerful simulation algorithm is presented to allow a real-life simulation of many reflector/feed configurations and to determine the usefulness of the nonuniform sampling technique for the co-polar and cross-polar patterns. Additionally, an overlapped window concept and a generalized error simulation model are discussed to identify the stability of the technique for recovering the field data among the nonuniform sampled data. Numerical results are tailored for the pattern reconstruction of a 20-m offset reflector antenna operating atL-band. This reflector is planned to be used in a proposed measurement concept of large antennas aboard the space shuttle, whereby it would be almost impractical to accurately control the movement of the shuttle with respect to the radio frequency (RF) source in prescribed directions in order to generate uniform (u, v) sampled points. Also, application of the nonuniform sampling technique to patterns obtained using near-field measured data is demonstrated. Finally, results of an actual far-field measurement are presented for the construction of patterns of a reflector antenna from a set of nonuniformly distributed measured amplitude and phase data.  相似文献   

7.
We propose an approach for restoring the coherence between the scanning surfaces in phaseless near-field antenna characterization. The approach consists of accounting for the misalignments of the second scanning surface with respect to the first one directly within the radiation operator, restoring the coherence within the phaseless characterization algorithm. The restore of the coherence is demanded to a global optimization stage, performed by an efficient and effective Multilevel, Single-Linkage (MLSL) routine. The proposed method does not require any human intervention, nor it does need any additional hardware instrumentation. Numerical and experimental results show the potentialities of the technique.  相似文献   

8.
天线的远场对于研究天线辐射特性具有重大意义,由于远场的直接测量有着诸多限制,近场测量技术计算远场因其简洁准确的特点得到广泛应用. 然而,传统的近场测量技术要求获取近场区的幅度和相位分布才能发挥作用,随着天线频率的升高,人们想要在近场区获取准确的相位信息变得十分困难. 为了解决该技术难题,文中提出一种无相位近场测量技术. 利用一个封闭面上的幅度信息重建或猜测出包围待测天线的球面切向电场分布,并采用遗传算法进行全局优化,其最初为四组随机数据,经过数次优化后将逐渐接近准确结果. 仿真结果表明,本文方法能够在忽略相位信号的前提下,计算出准确的远场辐射特性.  相似文献   

9.
The possibility of determining the far field of radiating systems by measuring only the near-field amplitude is investigated. The main difficulties of the problem are examined in some detail and a new near-field/far-field transformation technique is developed, based on the measurement of the near-field amplitude over two surfaces surrounding the antenna under test. The accuracy of the far-field reconstruction results are related both to the distance between such surfaces and to some a priori information concerning the near-field phase and/or the radiating system. The information on the radiating system allows relaxation of the need for any information on the near-field phase provided that the distance between the measurement surfaces is high enough. Conversely, the knowledge of a more or less corrupted near-field phase allows reduction of such distances without affecting the accuracy of the far-field reconstruction. Numerical examples validating the effectiveness of the developed algorithm are provided for the planar scanning case  相似文献   

10.
A novel hybrid procedure is proposed in this paper for far-field reconstruction from phaseless near-field data. A basically interferometric approach is adopted to retrieve the near-field phase from amplitude-only measurements, which are collected by a simple microstrip circuit used in conjunction with two identical probes moving on the scanning surface. A certain number of sets of complex near-field data is obtained, apart from constant phase-shifts to be computed, one for each set. A nonredundant representation based on the introduction of the reduced field is then adopted to evaluate these shifts, with an accurate and fast convergence to the solution. In order to validate the proposed technique, an X-band prototype using two flanged WR-90 waveguides is successfully designed and tested on a cylindrical geometry for a standard pyramidal horn.  相似文献   

11.
A novel customized bi-polar planar near-field measurement technique is presented in a two-part paper. This bipolar technique offers a large scan plane size with minimal “real-estate” requirements and a simple mechanical implementation, requiring only rotational motions, resulting in a highly accurate and cost-effective antenna measurement and diagnostic system. Part I of this two-part paper introduced the bi-polar planar near-field measurement concept, discussed the implementation of this technique at the University of California, Los Angeles (UCLA), and provided a comparative survey of measured results. This paper examines the data processing algorithms that have been developed and customized to exploit the unique features of the bi-polar planar near-field measurement technique. Near-field to far-field transformation algorithms investigated include both interpolatory and non-interpolatory algorithms due to the a typical arrangement of the bi-polar near-field samples. The algorithms which have been tailored for the bi-polar configuration include the optimal sampling interpolation (OSI)/fast Fourier transform (FFT), Jacobi-Bessel transform, and Fourier-Bessel transform. Additionally, holographic imaging for determination of antenna aperture fields has been incorporated to facilitate antenna diagnostics. Results for a simulated measurement of an array of infinitesimal dipoles and a measured waveguide-fed slot array antenna are included. Appropriate guidelines with respect to the advantages and disadvantages of the various processing algorithms are provided  相似文献   

12.
介绍用于天线平面近场测量的一种近远场变换新算法。该法利用被测天线的平面波谱和口径场幅相分布之间的关系,以及天线口面的约束条件,用G-P迭代算法从平面波谱的置信谱域部分恢复出置信谱域外的平面波谱。这种方法减小了较小截断角下有限扫描面对测量精度的影响,并提高了天线近场测量的效率。  相似文献   

13.
14.
Spatial sampling and filtering in near-field measurements   总被引:1,自引:0,他引:1  
A sample spacing criterion and a data minimization technique for measurements made over the surface of a plane in the near field of an antenna are presented. The sample spacing is shown to depend on the distance from the antenna to the measurement plane, and on the extent to which evanescent waves can be neglected. The near-field data minimization technique utilizes two-dimensional spatial filtering to effect a significant reduction in computational effort required to calculate selected portions of the far-field pattern. Far-field patterns of anXband antenna calculated from near-field measurements are presented and compared with those measured on a standard far-field range. The far-field calculations are repeated for several near-field sample spacings and for various post-filter sample rates.  相似文献   

15.
Near-field antenna measurements combined with a near-field far-field transformation are an established antenna characterization technique. The approach avoids far-field measurements and offers a wide area of post-processing possibilities including radiation pattern determination and diagnostic methods. In this paper, a near-field far-field transformation algorithm employing plane wave expansion is presented and applied to the case of spherical near-field measurements. Compared to existing algorithms, this approach exploits the benefits of diagonalized translation operators, known from fast multipole methods. Due to the plane wave based field representation, a probe correction, using directly the probe's far-field pattern can easily be integrated into the transformation. Hence, it is possible to perform a full probe correction for arbitrary field probes with almost no additional effort. In contrast to other plane wave techniques, like holographic projections, which are suitable for highly directive antennas, the presented approach is applicable for arbitrary radiating structures. Major advantages are low computational effort with respect to the coupling matrix elements owing to the use of diagonalized translation operators and the efficient correction of arbitrary field probes. Also, irregular measurement grids can be handled with little additional effort.  相似文献   

16.
在平面近场天线测量中,有限扫描面截断是影响测量精度的主要误差源之一,找到解决截断误差的方法是天线测量的研究重点之一.文中将平面近场天线测量中由有限区域内的场求平面波谱的过程抽象为带限函数外推的数学模型,从实际测量中的近远场变换理论出发,论证了GP(Gerchberg-Papoulis)算法应用在平面近场测量中在理论上是切实可行的.将GP算法应用在平面近场天线测量中,并分析了不同迭代次数算法的修正情况.结果表明,随着算法迭代次数的增多,可信角域外计算方向图与理论方向图差别明显减小.因此,本文的方法能够明显减小平面近场测量中截断误差的影响.除此以外,还分析了误差对算法收敛性的影响,结果表明,误差对算法修正效果影响较大.  相似文献   

17.
In many cases, it is impractical or impossible to make antenna pattern measurements on a conventional far-field range; the distance to the radiating far field may be too long, it may be impractical to move the antenna from its operating environment to an antenna range, or the desired amount of pattern data may require too much time on a far-field range. For these and other reasons, it is often desirable or necessary to determine far-field antenna patterns from measurements made in the radiating near-field region; three basic techniques for accomplishing this have proven to be successful. In the first technique, the aperture phase and amplitude distributions are sampled by a scanning field probe, and then the measured distributions are transformed to the far field. In the second technique, a plane wave that is approximately uniform in amplitude is created by a feed and large reflector in the immediate vicinity of the test antenna. And in the third technique, the test antenna is focused within the radiating near-field region, patterns are measured at the reduced range, and then the antenna is refocused to infinity. Each of these techniques is discussed, and the various advantages and limitations of each technique are presented.  相似文献   

18.
相控阵天线单元存在着幅度和相位误差,这些误差的综合作用会导致天线方向图副瓣电平达不到优化设计结果。提出了一种基于近场幅相校正的相控阵天线低副瓣综合方法,首先采用近场单通道测量方法,得到相控阵天线阵面的实测幅相值;然后采用非线性二乘法对天线单元幅度和相位进行优化综合;最后根据优化幅相值对实测幅相值进行修正,获得相控阵天线阵面幅相配置参数。方向图实测结果表明该方法可行、有效。  相似文献   

19.
The problem of antenna characterization from phaseless near-field data is addressed by appropriate use of the available information on the Antenna Under Test (AUT) and on the scanning geometry to provide efficient representations for both the unknowns and the data. Such a strategy allows improving the reliability and the accuracy of the proposed characterization algorithm and, at the same time, shortens the overall measurement process.   相似文献   

20.
This paper describes, analyzes, and implements an approach to far-field determination from phaseless measurements over two planar surfaces. A proper formulation of the problem is considered as a quadratic inverse one whose data is the square amplitude of the near field. A solution is introduced as the global minimum of an appropriate functional. Next, to perform such a minimization procedure, a finite dimensional representation of the field radiated by sources whose plane-wave spectrum becomes negligible outside a fixed angular domain is used. A detailed investigation of the properties of the mapping connecting the unknowns to the data makes it possible to analyze how to escape from the local minima possibly met in the course of the minimization procedure. To this end, the crucial role of the availability of phaseless data over two different surfaces and of appropriate weights in the functional definition is emphasized, and a reliable iterative procedure converging on the solution, regardless of the starting point, is thus obtained. This property is confirmed by experimental results concerning near-zone data from a shaped reflector at 9 GHz. It can be readily appreciated that when only the field intensity is detected the complexity and the cost of the equipment required for near-field techniques in antenna testing and diagnostics can be reduced to a very large extent  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号