首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
IEEE 1588协议所提供的高精度的网络同步方式,在智能变电站网络化通信中具有重要的应用价值。基于抗网络流量能力、时间戳精度和可靠性分析了更适用于智能变电站的IEEE 1588时钟模式。基于过程层网络报文的特征和实际工况,分析了交换机风暴过滤功能及其不足对IEEE 1588同步性能的影响。搭建了智能变电站过程层三网合一硬件时钟性能测试平台,测试了虚拟局域网(VLAN)正常或失效时IEEE 1588同步受背景流量的影响。通过仿真分析了交换机风暴下同步偏差对相量测量单元(PMU)量测误差的影响。  相似文献   

2.
本文分析了智能变电站采用IEEE 1588时钟同步技术的应用可行性,围绕过程层交换机时钟模型、IED设备时钟模型、通信模式、映射协议栈、时钟冗余等几个关键问题进行了分析,给出了基于IEEE 1588时钟同步技术的智能变电站全站对时方案,华东电网IEEE 1588互操作性测试表明智能变电站采用IEEE 1588技术可以满足对时精度。  相似文献   

3.
智能变电站和智能电网的发展对电力系统时钟同步提出了更高的要求,文中阐述了网络时钟同步的基本方法,并着重分析了IEEE 1588实现高精度时钟同步的主要原理.在研制IEEE 1588主时钟、从时钟和交换机的基础上,对点对点IEEE 1588和网络IEEE 1588两种同步方案进行了实验验证.结果表明,两种时钟同步方式均可...  相似文献   

4.
针对智能变电站的交换机中本地时钟波动导致的时间同步系统可靠性差的问题,提出基于IEEE1588精确时钟协议(PTP)同步报文的交换机测试方法,并研发了手持式IEEE1588交换机测试仪。首先,通过协议报文获取报文时间戳、交换机驻留时间和路径延时时间;然后,计算测试仪与交换机的主从时间偏差值,得到被测交换机的同步误差;最后,通过现场测试证明所研发测试仪对交换机授时的测量和监控精度达到ns级,可满足实际应用需求。  相似文献   

5.
IEEE 1588时钟同步方式可以满足智能化变电站同步对时的要求。本文分析了IEEE 1588同步对时系统的原理和优越性,对比两种设备(具有抗网络压力的设备和不具备抗网络压力的设备)点对点模式和经IEEE 1588交换机模式下在不同流量的网络压力冲击下的表现和IEEE 1588对时性能。试验表明,虽然网络压力对设备的IEEE 1588对时精度没有直接影响,但是如果设备不具备抗网络压力的能力,随着流量的增加,设备的测试结果会受到影响,甚至出现不能正常工作的现象。因此,在智能变电站的同步对时系统中,特别是IEEE 1588对时网络中,加强对时设备的抗网络压力能力非常重要。  相似文献   

6.
为了解决普通对时模式在分布式以太网络中对时精度低或专网施工复杂等问题,在智能变电站以太网络中引入IEEE1588时钟同步协议。分析和研究了IEEE1588普通时钟、边界时钟和透明时钟模型的校准特性和时钟属性,并搭建智能变电站仿真网络结构模型,进行模型验证和校准特性仿真测试验证,仿真测试结果表明IEEE1588协议应用在智能变电站以太网络中提高了时钟同步精度,简化了智能变电站网络结构,具有推广应用的现实价值。  相似文献   

7.
由于IEEE1588具有的高精度和优点,其必将在电力系统内广泛使用。为提升IEEE1588精确时钟同步协议的应用水平,总结了IEEE1588精确时钟同步协议的组网特性和在智能变电站中实际使用的几种实施方案,并比较了各种实施方案的差别以及对同步精度的影响,指出各种实施方案中的关键节点和注意事项,为IEEE1588精确时钟同步协议在智能变电站中进行大面积使用提供一些参考性意见。  相似文献   

8.
研究了智能变电站二次设备IEEE1588对时原理,分析了现有的主要时间参考系的区别,结合工程实践提出了智能变电站监控系统时间参考系的应用原则。由于智能变电站测控装置的开关量采样模块前移至智能终端,提出了智能变电站事件顺序(SOE)时间精度的测量方法,通过软件IEEE1588对时试验验证了只有采用智能终端就地打时标才能满足SOE时间精度要求。  相似文献   

9.
介绍了基于FPGA与PowerPC硬件平台的IEEE1588对时系统的设计方案,分析了IEEE1588的时间补偿及延时测量机制等关键技术原理,为设计智能变电站中支持多端口IEEE1588的对时装置提供了一种切实可行的实现方案。  相似文献   

10.
针对智能变电站中IEEE 1588对时信息与采样值共网传输时,IEEE 1588对时信息网络传输的往返延时不一致,造成同步精度降低的问题,对网络对时进行了研究.对本地时钟相偏进行了极大似然估计与最优线性无偏估计的推导,给出了本地时钟相偏的最优计算方法.试验表明,方法可以显著减小网络传输往返延时不对称对IEEE 1588...  相似文献   

11.
本文对110kV大侣智能变电站自动化系统的设计方案进行了应用分析:①过程层采用SV+GOOSE+IEEE1588共网传输模式下的保护、控制、计量、录波配置方案;②采用不同原理的电子式互感器和常规互感器混合使用的线路、主变和母线差动保护应用方案;③通信时钟同步及主备切换方案;④智能变电站保护控制设备采用动态组播协议应用方...  相似文献   

12.
IEEE 1588时钟同步系统误差分析及其检测方法   总被引:3,自引:2,他引:1  
简要阐述了IEEE 1588时钟同步系统的工作原理,着重分析了时钟同步系统中可能的误差源及影响因素,提出了使用线性收敛比较法时时钟同步系统进行在线故障检浏.试验结果表明该方法可以发现IEEE 1588时钟同步系统中存在的故障或误差.  相似文献   

13.
详细分析了SNTP、IRIG-B、IEEE1588三种时钟同步方式的原理及特点,并总结了其优点和缺点。在研究了数字化变电站网络拓扑结构的基础上,按照站控层、间隔层和过程层分层讨论数字化变电站的时钟同步网络,结合三种时钟同步方式的特点,为新建变电站推荐时钟同步网络的建设方案,建议在站控层网络采用NTP协议,在过程层采用点对点连接方式时推荐采用IRIG-B,而组网的情况下建议采用IEEE1588,并建议过程层推广应用IEEE1588时钟同步协议。  相似文献   

14.
基于IEEE 1588的变电站过程层采样值同步技术研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了提高变电站过程层网络采样值的同步精度,详细分析了基于IEEE 1588精确同步协议的变电站过程层采样值同步技术的原理与实现方式。分析对比了瞬时值差动与矢量差动的采样精度,研究了同步误差对差动保护采样值精度的影响;通过分析IEEE 1588协议同步的实现过程,并与毫秒级别对时协议NTP进行对比,指出了IEEE 1588实现所涉及到的关键技术。通过分析基于IEEE 1588过程层采样值同步在实际工程应用中的实现方式,论证了IEEE 1588协议的采样精度达到亚微秒级别,能够有效减小多端同步采样的精度,对于变电站安全稳定运行具有十分重要的意义。  相似文献   

15.
基于IEEE 1588标准的变电站同步网络的研究   总被引:2,自引:0,他引:2  
介绍了国内现阶段数字化变电站时钟同步技术的应用,比较了现阶段变电站时钟同步技术的技术特点。针对新型数字化变电站高精度时钟同步指标要求,引入能达到亚微秒级对时精度的IEEE 1588时钟同步对时技术,阐述了IEEE1588时钟同步技术原理。基于IEEE1588时钟同步技术,讨论了数字化变电站站内对时网络的3种配置方法。分析了IEEE1588对时技术用于区域电网的局限性,综合全球定位系统(GPS)对时技术和IEEE1588技术提出了一种现阶段最优化的变电站同步时钟网络配置方案。  相似文献   

16.
为解决配电网中配电终端的同步对时问题,提出利用网络测量和控制系统精确时钟同步协议标准(standard for a precision clock synchronization protocol for network measurement and control system,IEEE 1588)实现配电终端同步对时的方法。深入研究IEEE 1588中的时钟类型、IEEE 1588报文格式、延迟请求响应机制和IEEE 1588时钟同步过程,并提供基于IEEE 1588的配电网同步对时网络的实例。通过系统测试,对精度、馈线自动化测控终端(feeder terminal unit,FTU)的B码对接性能和同步可靠性进行全面检测,证明了基于IEEE 1588的配电网同步对时网络的优越性。  相似文献   

17.
谷海彤 《供用电》2011,28(6):43-47
发展智能电网迫切需要各变电站、各级调度中心之间建立统一的时间同步机制,基于IEEE 1588标准的全电网精确同步对时系统是建立此时间同步机制的有效途径。阐述了IEEE 1588标准的精确对时原理、特点和必要性,以及同步与延迟计算的过程,分析了利用IEEE 1588标准同步对时的关键硬件和基本软件框架。在此基础之上,提出了全电网精确对时系统的部署与构架,以及利用IEEE 1588标准的精确对时效果的测试方法,通过其测试结果可以得知时钟同步的精准程度。  相似文献   

18.
无锡220 kV西泾智能变电站按站控层、间隔层、过程层"三层两网"设计,220 kV电压等级母线和变压器保护过程层采用"直采网跳"模式,线路及母联保护过程层采用"直采直跳"模式,过程层网络双重化配置;110 kV电压等级保护过程层采用"网采网跳"模式,同时SV网、GOOSE网、IEEE 1588网三网合一,网络冗余配置。同一间隔的保护测控功能集成在一个装置内。站控层实现了基于主站再确认机制的顺序控制、分布式状态估计、智能告警及故障信息综合分析决策等智能变电站高级功能。配置了计量对比分析系统,在各种工况下对传统互感器和电子式互感器的长期运行特性进行对比分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号