首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
选择乙烯-醋酸乙烯酯共聚物作表面改性剂,将其溶解在二甲苯中,对超高相对分子质量聚乙烯(UHMWPE)冻胶纤维进行萃取,然后经过多级热拉伸制得改性UHMWPE纤维。对冻胶纤维的萃取动力学、改性前后纤维的表面化学结构、表面粘结性能和力学性能进行了比较。结果表明:加入表面改性剂后,冻胶纤维的萃取除油速率变慢;纤维与树脂基体的粘结强度大大提高;纤维的力学性能略有下降。  相似文献   

2.
以乙烯-醋酸乙烯酯共聚物(EVA)作为共混改性剂,将其溶解在超高相对分子质量聚乙烯(UHMWPE)纺丝溶液中,制得共混改性UHMWPE冻胶纤维;对改性UHMWPE冻胶纤维进行萃取,干燥和热拉伸制得改性UHMWPE纤维;研究了改性前后纤维的结构与性能.结果表明:共混改性后UHMWPE纤维表面引入了极性基团,纤维与树脂基体...  相似文献   

3.
选用硅烷偶联剂KH-550,KH-560和钛酸酯偶联剂NDZ-201作为表面改性剂,对超高相对分子质量聚乙烯(UHMWPE)冻胶纤维在萃取阶段进行表面处理,经干燥、超拉伸制得表面改性UHMWPE纤维。采用红外光谱仪、接触角测量仪测定了纤维的表面化学结构和表面润湿性能,采用单纤维树脂包埋-拔出法测定了纤维与树脂基体的界面剪切强度,比较了改性前后纤维的力学性能变化。结果表明:改性后纤维表面引入了极性基团,硅烷偶联剂KH-550对UHMWPE纤维的表面改性效果最好。采用质量分数为1%的硅烷偶联剂KH-550溶液处理后,纤维与环氧树脂间的界面剪切强度提高了87.8%,纤维的断裂强度和模量分别提高了6.9%和32.6%。  相似文献   

4.
介绍了低温等离子体的概念、分类及其在超高相对分子质量聚乙烯纤维(UHMWP E)表面改性方面的特点;阐述了国内外在低温等离子体对UHMWPE纤维表面改性前后纤维本身及其复合材料性能的影响情况;简介了用自行研制的低温等离子体设备对UHMWPE纤维进行表面改性的研究结果和低温等离子体处理UHMWPE纤维表面改性的发展前景。实验表明,UHMWPE纤维经过等离子体处理后表面产生刻蚀和交联,其与树脂间的粘结性能改善;该低温等离子体设备能满足UHMWPE纤维表面改性连续化生产需要。  相似文献   

5.
《合成纤维工业》2016,(5):53-58
综述了近年来国内外超高相对分子质量聚乙烯(UHMWPE)纤维表面改性的研究进展,介绍了UHMWPE纤维表面改性方法主要包括等离子体改性、辐照接枝改性、化学氧化改性、仿生修饰改性、表面偶联剂处理、电晕处理等,这些改性方法各有其优缺点,建议将上述两种或多种方法进行结合,在保证UHMWPE纤维原有优异性能的基础上,以使UHMWPE纤维获得最佳表面性能。  相似文献   

6.
超高分子量聚乙烯复合材料的发展   总被引:10,自引:3,他引:10  
阐述了超高分子量聚乙烯(UHMWPE)的优良性能和不足之处,讨论了以提高UHMWPE流动性和物理力学性能为目的的各种复合改性,对改性方式及流动改性剂、填料等进行列举分析,并提出进一步研究的方向。  相似文献   

7.
利用低温等离子体技术对超高相对分子质量聚乙烯(UHMWPE)纤维进行表面改性,用单因素试验和正交试验对改性后的UHMWPE纤维的静摩擦因数和断裂强力进行测试与分析,最终确定最优的等离子体改性工艺为压强50 Pa、功率100 W、时间180 s。对处理前后的UHMWPE纤维的毛细效应、表面形貌、红外光谱进行了测试和对比,结果发现:改性后的UHMWPE纤维的吸水性能明显增强,纤维表面变得凹凸不平,粗糙度和比表面积增大,纤维表面起伏数量增多,幅度变大,且出现了新的含氧官能团,有利于提高UHMWPE纤维表面的黏结性。  相似文献   

8.
综述了超高分子量聚乙烯(UHMWPE)、碳纳米管(CNTs)、UHMWPE/CNTs复合体系及其纤维的研究现状,以及CNTs的添加对UHMWPE/CNTs复合体系及其纤维性能的影响;添加CNTs可有效提高UHM-WPE的耐磨性、电学性能、力学性能以及UHMWPE纤维的抗蠕变性能和热稳定性能;指出CNTs对UHM-WPE改性过程中存在的主要问题是CNTs分散性差,CNTs的生产成本高,UHMWPE/CNTs的改性机理有待进一步深入,并进一步拓宽UHMWPE/CNTs复合体系及其纤维的应用领域。  相似文献   

9.
以过氧化二苯甲酰对超高相对分子质量聚乙烯(UHMWPE)进行表面处理,采用傅里叶变换红外光谱、差示扫描量热仪和热重分析仪进行了表征,并用扫描电镜观察了微观形貌,制备了天然橡胶(NR)/UHMWPE复合材料,研究了改性UHMWPE对NR硫化特性、力学性能及动态力学性能的影响。结果表明,改性后的UHMWPE表面粗糙度增加,熔融温度升高;NR/UHMWPE复合材料的最佳硫化条件为140℃、20 min。随着改性UHMWPE用量的增加,NR/UHMWPE复合材料的邵尔A硬度逐渐增大,拉伸强度逐渐减小。改性UHMWPE与NR基体黏结性较好,改善了复合材料的力学性能和动态力学性能。  相似文献   

10.
文章简要介绍了超高分子量聚乙烯(UHMWPE)纤维的制备方法、性能及应用情况,与其他纤维相比,UHMWPE纤维具有高强度、高模量、低断裂伸长率等优良性能,但因UHMWPE纤维阻燃性能较差,严重制约其发展及应用。基于UHMWPE纤维的燃烧机理及阻燃方法,综述了国内外UHMWPE纤维的阻燃改性研究现状。研究表明:后整理法和接枝改性法存在效果不明显、实施难度较大的缺陷,且改性后UHMWPE纤维的阻燃耐洗性、持久性较差。共混法可以使阻燃剂较好地包裹在UHMWPE纤维表面及内部,阻燃效果良好。  相似文献   

11.
《Polymer Composites》2017,38(6):1215-1220
The mechanical properties of ultra‐high molecular weight polyethylene (UHMWPE) fibers reinforced natural rubber (NR) composites were determined, and the effects of fiber surface treatment and fiber mass fraction on the mechanical properties of the composites were investigated. Chromic acid was used to modify the UHMWPE fibers, and the results showed that the surface roughness and the oxygen‐containing groups on the surface of the fibers could be effectively increased. The NR matrix composites were prepared with as‐received and chromic acid treated UHMWPE fibers added 0–6 wt%. The treated UHMWPE fibers increased the elongation at break, tear strength, and hardness of the NR composites, especially the tensile stress at a given elongation, but reduced the tensile strength. The elongation at break increased markedly with increasing fiber mass fraction, attained maximum values at 3.0 wt%, and then decreased. The tear strength and hardness exhibited continuous increase with increasing the fiber content. Several microfibrillations between the fiber and NR matrix were observed from SEM images of the fractured surfaces of the treated UHMWPE fibers/NR composites, which meant that the interfacial adhesion strength was improved. POLYM. COMPOS., 38:1215–1220, 2017. © 2015 Society of Plastics Engineers  相似文献   

12.
采用环氧氯丙烷作为处理试剂,通过傅-克化学反应来修饰热致性液晶聚芳酯(TLCP)纤维的表面,并通过傅里叶变换红外光谱仪(FTIR)、万能电子强力仪、单丝拔出试验(SFP)与扫描电子显微镜(SEM)系统研究了化学修饰对纤维表面的化学结构、纤维力学性能、复合材料的界面剪切强度及纤维的表面形态的影响。研究结果表明:通过傅-克化学反应修饰TLCP纤维的表面,可以有效地提高TLCP单纤维-环氧树脂复合材料的界面剪切强度,相对于未修饰的纤维约提高了52%,表面化学修饰的最佳反应时间为40 min。此外,经修饰的TLCP单纤维表面没有明显的刻蚀或受损现象,且纤维的力学性能不会受到明显影响。傅-克化学反应修饰TLCP纤维可有效提高TLCP纤维-环氧树脂复合材料的界面性能。  相似文献   

13.
PBO纤维因其具有高强度、高模量、高耐热性以及高化学稳定性等性能而被公认为目前综合性能最好的有机纤维。对自制的初生PBO纤维分别在500℃、550℃、600℃、650℃和700℃进行高温热处理,并对处理后纤维的力学性能、耐热性能、表面形貌以及界面性能进行测试。结果表明,500℃下热处理后PBO纤维拉伸强度最大为4.72GPa,随着热处理温度升高,纤维的力学性能下降;600℃下热处理后PBO纤维的初始分解温度最高为641.3℃;随着热处理温度的提高,PBO纤维的表面粗糙度在增加,同时其界面剪切强度(IFSS)也随着温度的升高而增大。  相似文献   

14.
The influence of corona treatment on the near-surface structures of treated ultra-high-molecular-weight polyethylene (UHMWPE) fibers was studied first by atomic force microscopy (AFM). AFM pictures showed that the pits on the corona-treated PE fiber surfaces had different change characteristics in depth compared with in length and breadth with variations of corona power. Then the UHMWPE fibers were subjected to chemical modification following the corona treatment, named the two-stage treatment. Surface morphologies and chemical properties of the treated fibers were analyzed by scanning electron microscopy (SEM), FT-IR–ATR spectroscopy and Raman spectroscopy. The results obtained suggested that some carbon–carbon double bonds had been introduced on the surfaces of the PE fibers after the two-stage treatment. These unsaturated groups could participate in free-radical curing of vinylester resin (VER), and this resulted in improvement of interfacial adhesion strength in the PE fiber/VER composites. In addition, the mechanical properties of the UHMWPE fibers reduced after corona treatment did not reduce further after subsequent chemical treatment with increase of corona power. In short, the two-stage treatment proved to be effective in improving the interfacial adhesion of the composites and maintaining the high mechanical properties of the PE fibers, as this treatment method did not destroy the bulk structure of the UHMWPE fibers.  相似文献   

15.
用低温等离子体技术和接枝反应对超高分子量聚乙烯(UHMWPE)纤维进行表面处理.纤维进行低温等离子体后接枝处理的最佳工艺条件是:在80℃的1.0 mol/L的马来酸酐水溶液中加热1.5 h在维持整体形貌的前提下,在纤维长链表面引入了活性基团,增大了纤维与其他基质材料之间的化学键合能力和咬合能力,提高纤维的表面性能,从而达到表面改性的目的。  相似文献   

16.
Two surface modification methods—plasma surface treatment and chemical agent treatment—were used to investigate their effects on the surface properties of ultrahigh‐molecular‐weight polyethylene (UHMWPE) fibers. In the analyses, performed using electron spectroscopy for chemical analysis, changes in weight, and scanning electron microscope observations, demonstrated that the two fiber‐surface‐modified composites formed between UHMWPE fiber and epoxy matrix exhibited improved interfacial adhesion and slight improvements in tensile strengths, but notable decreases in elongation, relative to those properties of the composites reinforced with the untreated UHMWPE fibers. In addition, three kinds of epoxy resins—neat DGEBA, polyurethane‐crosslinked DGEBA, and BHHBP‐DGEBA—were used as resin matrices to examine the tensile and elongation properties of their UHMWPE fiber‐reinforced composites. From stress/strain measurements and scanning electron microscope observations, the resin matrix improved the tensile strength apparently, but did not affect the elongation. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 655–665, 2007  相似文献   

17.
UHMWPE纤维高强度绳索的研究   总被引:7,自引:0,他引:7  
研究了纤维捻度、粘结剂对超高分子量聚乙烯(UHMWPE)纤维力学性能的影响及浸胶UHMWPE纤维表面的耐磨性能。UHMWPE纤维的断裂强力随着纤维捻度的增加而下降;纤维表面浸胶处理后断裂强力提高,当UH—MWPE纤维中改性氯丁胶或聚氨酯粘结剂的合量为6%时,其断裂强力增加17.2%或13.9%。经聚氨酯粘结剂处理的UHMWPE纤维表面的耐磨性能最好。  相似文献   

18.
A novel surface modification method for ultrahigh molecular weight polyethylene (UHMWPE) fibers to improve the adhesion with epoxy matrix was demonstrated. Polyethylene wax grafted maleic anhydride (PEW‐g‐MAH) was deposited on the UHMWPE fibers surface by coating method. The changes of surface chemical composition, crystalline structure, mechanical properties of fiber and composite, wettability, surface topography of fibers and adhesion between fiber and epoxy resin before and after finishing were studied, respectively. The Fourier transform infrared spectroscopy spectra proved that some polar groups (MAH) were introduced onto the fiber surface after finishing. The X‐ray diffraction spectra indicated that crystallinity of the fiber was the same before and after finishing. Tensile testing results showed that mechanical properties of the fiber did not change significantly and the tensile strength of 9 wt % PEW‐g‐MAH treated fiber reinforced composite showed about 10.75% enhancement. The water contact angle of the fibers decreased after finishing. A single‐fiber pull out test was applied to evaluate the adhesion of UHMWPE fibers with the epoxy matrix. After treatment with 9 wt % PEW‐g‐MAH, a pull‐out force of 1.304 MPa which is 53.59% higher than that of pristine UNMWPE fibers was achieved. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46555.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号