首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
詹斌  刘宁  蔡威  杨海东 《热处理》2013,(5):12-18
采用粉末冶金法制备了超细晶Ti( C, N)基金属陶瓷和纳米改性Ti( C, N)基金属陶瓷试样和刀具。研究了陶瓷相粉末粒度对Ti( C, N)基金属陶瓷显微组织、力学性能及其刀具耐磨损性能的影响。结果表明,超细晶Ti( C, N)基金属陶瓷和纳米改性Ti( C, N)基金属陶瓷的硬质相均具有黑芯/灰壳和白芯/灰壳两种显微结构。超细晶Ti( C, N)基金属陶瓷中白芯/灰壳结构硬质相晶粒较多,而纳米改性Ti( C, N)基金属陶瓷中硬质相晶粒主要为黑芯/灰壳结构。与超细晶Ti( C, N)基金属陶瓷相比,纳米改性Ti( C, N)基金属陶瓷具有较高的抗弯强度和断裂韧度以及较低的硬度和孔隙度。纳米改性Ti( C, N)基金属陶瓷刀具具有较长的使用寿命,约为超细晶Ti( C, N)基金属陶瓷刀具使用寿命的2.3倍。  相似文献   

2.
研究了二次颗粒尺寸和添加WC对双结构金属陶瓷组织和力学性能的影响,结果表明二次颗粒均匀地分布在基体中,随着添加WC含量的增加,组织中白芯灰壳结构和无芯结构增加。组织中发现了一种新的四层复合结构的硬质相。随着二次颗粒尺寸的增加,材料的断裂韧性提高,但抗弯曲度和硬度下降,而提高WC加入量,断裂韧性和抗弯曲度提高,但硬度有所下降。更高的断裂韧性主要归功于裂纹的分叉、桥接、偏转、微裂纹以及二次颗粒的拔出效应。  相似文献   

3.
王洪涛  熊惟皓 《硬质合金》2006,23(4):203-207
研究了不同Mo含量对高镍Ti(C,N)基金属陶瓷包覆相的组织结构与性能的影响。在Ti(C,N)基金属陶瓷中添加3%~15%不同含量的Mo,分别于1420℃、1430℃、1440℃温度下,进行真空烧结制备试样,通过扫描电镜观察组织结构与断口形貌,用三点弯曲法测试抗弯强度,用洛氏硬度计测得试样硬度。结果表明:当Mo含量为9%时材料的组织均匀,形成的包覆相厚度适中;在1430℃真空烧结时,比在1420℃及1440℃烧结时材料的力学性能好;当真空烧结温度为1430℃、Mo含量为9%时,试样的综合性能最好。  相似文献   

4.
研究VC/Cr3C2对Ti(C,N)基金属陶瓷微观组织和力学性能的影响。利用光学显微镜、X射线衍射仪和扫描电镜结合能谱仪研究微观组织。测试横向断裂强度、硬度和断裂韧性等力学性能。结果表明:微观组织中存在"黑芯-灰壳"和"白芯-灰壳"结构;由于添加VC/Cr3C2,硬质相晶粒变细,添加0.75VC/0.25Cr3C2的金属陶瓷晶粒细化最明显;黑芯随着VC添加量的增加而变细,壳随着Cr3C2添加量的减少而变厚;孔隙率随着VC/Cr3C2中VC的量增加而增大;横向断裂强度和硬度均升高,并且均在添加0.25VC/0.75Cr3C2时达到最大值;按适当的VC和Cr3C2添加量比例添加VC/Cr3C2可以有效地使断裂韧性升高,并在添加0.5VC/0.5Cr3C2时取得最大值。  相似文献   

5.
铣削刀片用纳米改性金属陶瓷的显微组织和力学性能   总被引:3,自引:1,他引:3  
研究了铣削刀片用纳米改性金属陶瓷的显微组织与力学性能。SEM观察结果表明,铣削刀片用纳米改性金属陶瓷组织仍由陶瓷相和金属相组成,其中粗大的陶瓷相颗粒为芯/壳结构;Mo元素添加能有效细化金属陶瓷陶瓷基体组织。抗弯测试表明,随金属相含量增加,金属陶瓷的抗弯强度和断裂韧性增加,而硬度则降低;断口分析可知,沿晶断裂为其主要的断裂方式。  相似文献   

6.
Effect of Mo and Mo2 C on the microstructure and properties of Ti(C,N)-based cermets was investigated in this article. The results have indicated that the weight percentage of Mo from 5 to 10 can reduce Ti(C,N) grain diameter and thickness of the rim, and Ti(C,N) grain can be wetted by Ni-Cu-Mo liquid so as to get small contiguity of Ti(C,N) grain. In that way, the transverse rupture strength of Ti(C,N)-based cermets has reached 1800-1900 MPa; the fracture toughness has been due to 16-18 MPa.m1/2. But 15 wt pct Mo was not more effective on Ti(C,N)-based cermets, because the thickness of the rim becomes larger. In the circumstance of Mo2 C, 5 wt pct Mo2 C was good for microstructure and properties of Ti(C,N)-based cermets, but 11 wt pct Mo2C has resulted in larger contiguity of Ti(C,N) grain and big Ti(C,N) grain diameter so as to reduce transverse rupture strength and fracture toughness. So that, the effect of Mo on Ti(C,N)-based cermets is better than Mo2C.  相似文献   

7.
采用粉末冶金工艺制备了6组不同Ni、Mo添加量的金属陶瓷材料.通过扫描电镜观察组织结构、断口形貌及裂纹扩展,用三点弯曲法测试抗弯强度,用洛氏硬度计测得试样硬度.试验结果表明,添加Mo后,TiC基金属陶瓷呈现出典型的芯壳结构,组织细化明显.当TiC含量为70%、Ni∶Mo=2 ∶ 1时,材料的抗弯强度、硬度与断裂韧性综合...  相似文献   

8.
In the study, a TiC–high-Mn-steel cermet is fabricated using FeMo and Fe–Mo–Cr pre-alloyed powders as metallic binders by powder metallurgy techniques. The effect of Cr on the microstructure and mechanical properties of the cermet is studied and the cermet preparation process is optimized. The microstructure and fracture morphology of the cermets are observed with scanning electron microscopy, while phase identification and analysis are performed by X-ray diffractometry. The results show that the particles of Cr-free cermet are angular and polygonal, while those of cermet with added Cr are rounded and ellipsoidal. The grains of Cr-free cermet are larger than those of the Cr-added cermet, which is unlike similar conventional cermets. The grain size of the Cr-added cermet increases slightly with increased Cr content. In addition, the relative density of the cermet decreases slightly with increased Cr content. The hardness of cermet is maximized at HRC 64.8 with the Cr content of 1.0 wt%; with further increases in Cr, the hardness decreases gradually. The transverse rupture strength and impact toughness first increase and then decrease with increasing Cr content, reaching the maxima of 2355 MPa and 13.42 J/cm2, respectively, at the Cr content of 1.5 wt%. The strength and toughness of the cermet are improved greatly compared to those of conventional similar TiC–high-Mn-steel cermets.  相似文献   

9.
Zirconia and alumina based ceramics present interesting properties for their application as implants, such as biocompatibility, good fracture resistance, as well as high fracture toughness and hardness. In this work the influence of sintering time on the properties of a ZrO2–Al2O3 composite material, containing 20 wt% of Al2O3, has been investigated. The ceramic composites were obtained by sintering, in air, at 1600 °C for sintering times between 0 and 1440 min. Sintered samples were characterized by microstructure and crystalline phases, as well as by mechanical properties. The grain growth exponents, n, for the ZrO2 and Al2O3 were 2.8 and 4.1, respectively, indicating that different mechanisms are responsible for grain growth of each phase. After sintering at 1600 °C, the material exhibited a dependency of hardness as function of sintering time, with hardness values between 1500 HV (120 min) and 1310 HV (1440 min) and a fracture toughness of 8 MPa m1/2, which makes it suitable for bioapplications, such as dental implants.  相似文献   

10.
Al2O3–TiC composites with a content of 30 wt% TiC with various size of starting powders were manufactured by hot pressing. The Vickers hardness, bending strength and fracture toughness were studied. The experiment results show that the starting powder size has a significant effect on the properties of the Al2O3–TiC composites. The maximum bending strength of the submicron Al2O3 with the fine TiC powders addition is 712 MPa, while the maximum fracture toughness of the same Al2O3 matrix with the large TiC powders addition is 6.5 MPa m1/2.  相似文献   

11.
NbC–24.5 wt.% Co cermets with up to 30 wt.% WC were obtained by solid state hot pressing at 1300 °C under a pressure of 45 MPa for 10 min and pressureless liquid phase sintering at 1360 °C for 60 min. The effect of WC addition on the microstructure and mechanical properties of NbC–Co based cermets was investigated. The hot pressed cermets exhibited interconnected and irregular niobium carbide (NbC) or (Nb,W)C grains, whereas the shape of the NbC grains changed from faceted with rounded corners to spherical, as the WC content increased in the pressureless sintered cermets. The undissolved WC increased with increasing WC addition. A clear core/rim structure was observed in the hot pressed cermets with 10–30 wt.% WC additions, whereas this structure was gradually eliminated when pressureless sintering. The hardness remains nearly constant whereas the fracture toughness slightly increases with increasing WC addition. The dissolution of WC in the Co binder and NbC grains, as well as the formation of a solid solution (Nb,W)C phase were supported by thermodynamic calculations.  相似文献   

12.
The effect of VC and Al additions on the sintering behavior, hardness, toughness, elastic properties and wear characteristics of WC–10 wt% Co has been studied. The amount of VC in the compositions varied up to 18 wt% and the aluminum contents was fixed at 2 wt% with the purpose to promote the in situ formation of the CoAl intermetallic phase. The specimens were prepared by vacuum sintering in the 1350–1500 °C range during 1 h. The sintered samples densification improved both with the temperature and VC contents up to 13 wt%. The heterogeneous microstructure consisting of WC, (W, V)C1−x and intermetallic Al5Co2 phase indicated that the expected reactive sintering induced by the Co and Al could not be properly controlled due to the large Al particle size used, resulting in isolated aluminum enriched pools. Vickers hardness and toughness followed an antagonistic behavior with values ranging from 12.8–17.5 GPa and 7.7–10.5 MPa m1/2, respectively. The sliding wear performance evaluation showed that friction decreases with VC addition but it could not be established a tendency for the wear rate coefficient though values obtained allow to consider these experimental compositions as promising wear resistant materials.  相似文献   

13.
Four cermets of composition TiC-10TiN-16Mo-6.5WC-0.8C-0.6Cr3C2-(32 − x)Ni-xCr (x = 0, 3.2, 6.4 and 9.6 wt%) were prepared, to investigate the effect of the partial substitution of Cr for Ni on densification behavior, microstructure evolution and mechanical properties of Ti(C,N)-Ni-based cermets. The partial substitution of Cr for Ni decreased full densification temperature, and the higher the content of Cr additive was, the lower full densification temperature was. The partial substitution of Cr for Ni had no significant effect of the formation of Mo2C and Ti(C,N) and the dissolution of WC, and however, it had a significant effect on the dissolution of Mo2C. Cr in Ni-based binder phase diffused into undissolved Mo2C to form (Mo,Cr)2C above 1000 °C at 6.4-9.6 wt% Cr additive, and a small amount of (Mo,Cr)2C did not dissolve after sintering at 1410 °C for 1 h at 9.6 wt% Cr additive. In the final microstructure, Cr content in Ni-based binder phase increased with increasing the content of Cr additive, and however, regardless of the content of Cr additive, coarse Ti(C,N) grains generally consisted of black core, white inner rim and grey outer rim, and fine Ti(C,N) grains generally consisted of white core and grey rim. The partial substitution of Cr for Ni increased hardness and decreased transverse rupture strength (TRS). Ni-based binder phase became hard with increasing the content of Cr additive, therefore resulting in the increase of hardness and the decrease of TRS. TRS was fairly low at 9.6 wt% Cr additive, which was mainly attributed hardening of Ni-based binder phase and undissolved (Mo,Cr)2C.  相似文献   

14.
采用粉末冶金法制备了Ni3Al做粘结相的Ti(C,N)基金属陶瓷,研究了添加不同含量Ni3Al粘结相的金属陶瓷的力学性能和显微组织并与Ni做粘结相的金属陶瓷进行了对比。结果表明,Ni3Al作粘结相的金属陶瓷综合力学性能总体上不如Ni做粘结相的金属陶瓷,随着金属陶瓷中Ni3Al含量的增加,其洛氏硬度值不断下降,而抗弯强度和断裂韧性却不断增加;显微组织分析表明,Ni3Al做粘结相的金属陶瓷同样具有芯环结构,Ni3Al可以控制环形相的厚度,抑制晶粒异常长大,使硬质相芯相棱角圆润。Ni3Al含量为30wt%左右的金属陶瓷能够兼顾硬度和抗弯强度等力学性能,此时的主要力学性能指标为:抗弯强度1 045±80 MPa,洛氏硬度HRA89.7±0.25,断裂韧性KIC为14.26 MPa·m1/2。  相似文献   

15.
于超  刘宁  章晓波 《硬质合金》2007,24(4):193-197
采用粉末冶金方法真空烧结制备了添加Ni-Ti形状记忆合金的Ti(C,N)-Co系金属陶瓷,研究了Ni-Ti合金对Ti(C,N)基金属陶瓷显微组织和力学性能的影响。结果表明:未加Ni-Ti合金的Ti(C,N)基金属陶瓷的显微组织表现为经典的黑芯-灰壳组织,陶瓷相多为球形;而加入Ni-Ti后的金属陶瓷随着Ni-Ti加入量的增多,组织逐渐细化,出现了多边形的陶瓷相,陶瓷相与粘结相的界面呈现直线关系。同时,金属陶瓷的抗弯强度和断裂韧性随着Ni-Ti合金加入量的增多有明显的提高,而硬度基本保持不变;Ni-Ti合金的加入量为15wt%时金属陶瓷获得最好的力学性能。  相似文献   

16.
The effects of Mo on the microstructure and mechanical properties of Ti(C,N)-based cermets with low Ni have been studied systematically. Different contents of Mo (4-12 wt.%) were added into Tl(C,N)-based cermets. Specimens were fabricated by conventional powder metallurgy and vacuum sintered at temperatures of 1440, 1450, and 1460℃ individually. The microstructure and fracture morphology were investigated by scanning electron microscope, and the mechanical properties such as transverse strength and hardness were measured. The results show that the microstructure is uniform and the thickness of rim phase is moderate when the content of Mo is 8 wt.%; the mechanical properties of the specimens sintered at 1450℃ are better than those sintered at 1440 and 1460℃. The integrated properties of transverse strength and hardness are the best when the content of Mo is 8 wt.% and the sintering temperature is 1450℃.  相似文献   

17.
This study deals with the microstructure and mechanical properties of WC–(W, Ti, Ta) C–9 vol.% Co cemented carbides fabricated by conventional sintering. The conventional WC particles of 4 μm size and ultrafine particles of 0.2 μm were introduced in the system with varying ratio. The ratios of conventional WC particles to ultrafine WC particles were 2:1, 1:1, and 1:2. The microstructures of sintered WC–(W, Ti, Ta) C–9 vol.% Co cemented carbides were sensitively dependent on the ratio of conventional WC particles to ultrafine WC particles. The rim phase increased with the increase in the amount of ultrafine particles. Hardness of WC–(W, Ti, Ta) C–9 vol.% Co cemented carbide increased with increase in the amount of rim phase and decrease in the average grain size of WC particles. The bending strength showed the similar trend of the hardness. The fracture morphologies are reported. The fracture behavior changed from mixed mode to transgranular fracture mode, when the ratio of conventional WC particles to ultrafine WC particles was changed from 2:1 to 1:2.  相似文献   

18.
Mo–Si–Al–C-based multiphase compounds and their composites reinforced by micro-SiC and TiC particulates were manufactured by means of reactive hot-pressed sintering method. Their microstructure and room temperature mechanical properties were studied. The results showed that Al addition and the ratio of Si/Al exerted a remarkable effect on the reaction products in the Mo–Si–Al–C systems. For the stoichiometric Mo5(Si,Al)3C mixed powders with a molar ratio of Mo:Si:Al:C as 5:1.5:1.5:1, the sintered body contained Mo3Si, Mo3Al2C, and Mo5Si3C as the major reaction products whereas and the minor phases consisted of MoSi2, Mo2C, and Mo(Si,Al)2 compounds. When the starting powder mixture was off-stoichiometric with a small amount of excess Si, only Mo2C accounted for the minor product. Moreover, the relative contents of the former three major phases were affected by the changed Si/Al ratio, where the amounts of Mo3Al2C and Mo5Si3C compounds decreased and increased, respectively with increasing Si/Al ratio. The two multiphase alloys showed poor mechanical properties, due to the existence of residual porosity. In contrast, the composites exhibited superiority in both flexural strength and fracture toughness at room temperature to the Mo–Si–Al–C-based multiphase compounds. MSAC1/20 wt.%SiC and MSAC1/20 wt.%TiC composites had a respective flexural strength and fracture toughness of 454 and 438 MPa, 4.93 and 4.85 MPa.  相似文献   

19.
X-ray diffractometer (XRD) and scanning electron microscope (SEM) were used to observe and investigate the microstructure and fracture morphology of Ti(C,N)-based cermets added with NiTi alloy powder. A new ceramic phase is found with the structure of gray core, black inner rim, noncontinuous white inner rim and continuous gray outer rim. The fracture toughness and the transverse rupture strength have a distinct trend to increase with the increase of NiTi powder content in Ti(C,N)-based cermets, while the hardness has the opposite trend. Grain refinement and the increase of metallic phase are the dominant strengthening and toughening mechanisms. Additionally, the crack deflection and bridging may play an active role in improving the properties, as well as the special structure of large metallic binder containing many small ceramic particles. In cermets with a higher content of NiTi powder, the microcrack and the crack closure effect induced by martensitic transformation are advantageous to the mechanical properties.  相似文献   

20.
以TiC、TiN为原料,Ni、Co为粘结剂,WC、Mo2C、TaC、C、Cr3C2为添加剂,采用真空热压烧结工艺制备Ti(C,N)基金属陶瓷材料。借助于SEM、EDS和XRD分别分析其显微结构、组成和物相,并测试其性能。结果表明:按配方(质量分数,%):TiC:41.2,TiN:10,Ni:7,Co:7,Mo2C:12,WC:15,TaC:6,Cr2C3:0.8,C:1配料,在1450℃,30MPa热压制得的试样晶粒细小,具有完整的芯-壳显微结构。其主要性能为:相对密度99.12%,维氏硬度22.74GPa,断裂韧性10.1MPa·m1/2,抗弯强度1192.83MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号