首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
The MAP kinase pathway has been shown to be active in many growth factor signaling systems, including that of prolactin (PRL). In our studies, the main objective was to examine the possible involvement of MEK kinases (Map/Erk kinase kinases) in PRL-stimulated mitogenic and lactogenic processes. We used the MEK kinase inhibitor PD 098059 to block MEK kinase activation in the Nb2 cell line and mammary gland explants derived from 12- to 14-day pregnancy mice. PD 098059 attenuated PRL-induced Nb2 cell mitogenesis at 10 microM and a maximum inhibition was observed at 100 microM. In cultured mammary tissues, PD 098059 at 100 microM had no effect on the PRL stimulation of lipid, casein and lactose synthesis and iodide uptake. Further, the growth-inhibitory effect of PD 098059 on Nb2 cells was ameliorated when the drug was removed from the culture medium, indicating that PD 098059 acts in a reversible manner. When MEK1 was immunoprecipitated from PD 098059 and/or PRL treated Nb2 cells, PRL-stimulated MEK1 kinase activity was directly inhibited by PD 098059 at concentrations employed in the culture experiments. PRL has no effect on the tyrosyl phosphorylation of MAP kinases in cultured mammary tissues derived from pregnant mice, whereas earlier we found that PRL stimulates the tyrosyl phosphorylation of all four MAP kinases in Nb2 cells. The results suggest that the MAP kinase pathway plays an important role in the PRL stimulation of Nb2 cell mitogenesis but is not involved in the PRL stimulation of milk product synthesis.  相似文献   

10.
11.
The mitogen-activated protein kinase (MAP kinase) pathway is thought to play an important role in the actions of neurotrophins. A small molecule inhibitor of the upstream kinase activator of MAP kinase, MAP kinase kinase (MEK) was examined for its effect on the cellular action of nerve growth factor (NGF) in PC-12 pheochromocytoma cells. PD98059 selectively blocks the activity of MEK, inhibiting both the phosphorylation and activation of MAP kinases in vitro. Pretreatment of PC-12 cells with the compound completely blocked the 4-fold increase in MAP kinase activity produced by NGF. Half-maximal inhibition was observed at 2 microM PD98059, with maximal effects at 10-100 microM. The tyrosine phosphorylation of immunoprecipitated MAP kinase was also completely blocked by the compound. In contrast, the compound was without effect on NGF-dependent tyrosine phosphorylation of the pp140trk receptor or its substrate Shc and did not block NGF-dependent activation of phosphatidylinositol 3'-kinase. However, PD98059 completely blocked NGF-induced neurite formation in these cells without altering cell viability. These data indicate that the MAP kinase pathway is absolutely required for NGF-induced neuronal differentiation in PC-12 cells.  相似文献   

12.
13.
14.
15.
Hepatocyte growth factor/scatter factor (HGF/SF) treatment of the Madin-Darby canine kidney epithelial cell line causes scattering of cells grown in monolayer culture and the formation of branching tubules by cells grown in collagen gels. HGF/SF causes prolonged activation of both the mitogen-activated protein (MAP) kinase extracellular signal-regulated kinase 2 (ERK2) and the phosphoinositide 3-OH kinase (PI 3-kinase) target protein kinase B (PKB)/Akt; inhibition of either the MAP kinase pathway by the MAP kinase/ERK kinase inhibitor PD98059 or the PI 3-kinase pathway by LY294002 blocks HGF/SF induction of scattering, although in morphologically distinct ways. Expression of constitutively activated PI 3-kinase, Ras, or R-Ras will cause scattering, but activated Raf will not, indicating that activation of the MAP kinase pathway is not sufficient for this response. Downstream of PI 3-kinase, activated PKB/Akt and Rac are both unable to induce scattering, implicating a novel pathway. Scattering induced by Ras or PI 3-kinase is sensitive to PD98059, as well as to LY294002, suggesting that basal MAP kinase activity is required, but not sufficient, for the scattering response. Induction of MDCK cell tubulogenesis in collagen gels by HGF/SF is inhibited by PD98059; expression of activated Ras and Raf causes disorganized growth in this system, but activated PI 3-kinase or R-Ras causes branching tubule formation similar to that seen with HGF/SF treatment. These data indicate that multiple signaling pathways acting downstream of Met and Ras are needed for these morphological effects; scattering is induced primarily by the PI 3-kinase pathway, which acts through effectors other than PKB/Akt or Rac and requires at least basal MAP kinase function. Elevated PI 3-kinase activity induces tubulogenesis, but total inhibition and excess activation of the MAP kinase pathway both oppose this effect.  相似文献   

16.
Chemotactic factors, i.e., an N-formyl peptide, C5a, interleukin-8, and leukotriene B4, induced neutrophils to activate mitogen-activated protein (MAP) kinases, as defined by the tyrosine phosphorylation and decrease in electrophoretic mobility of immunodetected 44-, 42-, and 40-kDa proteins. PD 98059, an inhibitor of MAP kinase kinase activation, blocked these changes. The drug likewise blocked neutrophil chemotaxis but did not alter superoxide anion production and paradoxically enhanced degranulation responses to the stimuli. The MAP kinase pathway appears to have a highly selective role in mediating motility but not other cellular responses.  相似文献   

17.
We have analyzed the regulatory roles of the first intron (intron-1) of the bovine beta-casein gene in the bovine beta-casein/CAT expression system using a mouse mammary epithelial cell line, HC11. After a combined treatment of HC11 cells with insulin, dexamethasone and prolactin, the induced expression of p beta c1.8/+ICAT vector including 2 kb intron-1 and 1.8 kb promoter was greatly increased to 23.5 folds, while that of p beta ca.8CAT basic vector with 1.8 kb promoter only, was 6.5. A classical enhancer activity was shown in the 2 kb intron fragment from the experiment in which the orientation and the position of the intron-1 on the vectors were changed. The enhancer activity was largely dependent on the lactogenic hormones, especially prolactin. A stepwise reduction of the inducibility in the 5' to 3' deletion analysis of the intron-1 indicates the existence of several functional elements in the region. In particular, an internal fragment (+1071 to +1490) was important for the prolactin-dependent enhancing activity of the intron-1. These results suggest that several elements in the intron-1 of the bovine beta-casein gene cooperatively interact not only with each other but also with its promoter for hormonal induction.  相似文献   

18.
The molecular mechanism(s) by which tumor cells survive after exposure to ionizing radiation are not fully understood. Exposure of A431 cells to low doses of radiation (1 Gy) caused prolonged activations of the mitogen activated protein (MAP) kinase and stress activated protein (SAP) kinase pathways, and induced p21(Cip-1/WAF1) via a MAP kinase dependent mechanism. In contrast, higher doses of radiation (6 Gy) caused a much weaker activation of the MAP kinase cascade, but a similar degree of SAP kinase cascade activation. In the presence of MAP kinase blockade by the specific MEK1 inhibitor (PD98059) the basal activity of the SAP kinase pathway was enhanced twofold, and the ability of a 1 Gy radiation exposure to activate the SAP kinase pathway was increased approximately sixfold 60 min after irradiation. In the presence of MAP kinase blockade by PD98059 the ability of a single 1 Gy exposure to cause double stranded DNA breaks (TUNEL assay) was enhanced at least threefold over the following 24-48 h. The increase in DNA damage within 48 h was also mirrored by a similar decrease in A431 cell growth as judged by MTT assays over the next 4-8 days following radiation exposure. This report demonstrates that the MAP kinase cascade is a key cytoprotective pathway in A431 human squamous carcinoma cells which is activated in response to clinically used doses of ionizing radiation. Inhibition of this pathway potentiates the ability of low dose radiation exposure to induce cell death in vitro.  相似文献   

19.
Activation of the mitogen-activated protein (MAP) kinase pathway has been associated with both cell proliferation and differentiation. Constitutively activated forms of Mek (MAP kinase/Erk kinase) and Erk (MAP kinase) have been previously shown capable of inducing differentiation or proliferation in nonhematopoietic cells. To specifically examine the role of Erk activation in megakaryocytic growth and development, we activated the MAP kinase pathway by the transfection of constitutively activated Mek or Erk cDNA into a human megakaryoblastic cell line, CMK, by electroporation. The CMK transfectant clones that expressed constitutively activated Mek or Erk showed morphologic changes of differentiation. Transfected cells also showed expression of mature megakaryocytic cell surface markers. The MAP kinase pathway was also activated by treatment of the hematopoietic cells with a cytokine that activates Erk. The treatment of CMK cells with stem cell factor (SCF ) caused MAP kinase activation and induced differentiation by the expression of mature megakaryocytic cell surface markers. The effects of the SCF treatment were inhibited by pretreatment with a specific inhibitor of the MAP kinase pathway, PD98059. In this report, we conclude that activation of the MAP kinase pathway was both necessary and sufficient to induce differentiation in this megakaryoblastic cell line.  相似文献   

20.
Kinases mediating phosphorylation and activation of cytosolic phospholipase A2 (cPLA2) in intact cells remain to be fully characterized. Platelet-activating factor stimulation of human neutrophils increases cPLA2 phosphorylation. This increase is inhibited by PD 98059, a mitogen-activated protein (MAP)/extracellular signal-regulating kinase (erk) 1 inhibitor, but not by SB 203580, a p38 MAP kinase inhibitor, indicating that this action is mediated through activation of the p42 MAP kinase (erk2). However, platelet-activating factor-induced arachidonic acid release is inhibited by both PD 98059 and SB 203580. Stimulation by TNF-alpha increases cPLA2 phosphorylation, which is inhibited by SB 203580, but not PD 98059, suggesting a role for p38 MAP kinase. LPS increases cPLA2 phosphorylation and arachidonic acid release. However, neither of these actions is inhibited by either PD 98059 or SB 203580. PMA increases cPLA2 phosphorylation. This action is inhibited by PD 98059 but not SB 203580. Finally, FMLP increases cPLA2 phosphorylation and arachidonic acid release. Interestingly, while the FMLP-induced phosphorylation of cPLA2 is not affected by the inhibitors of the p38 MAP kinase or erk cascades, both inhibitors significantly decrease arachidonic acid release stimulated by FMLP. SB 203580 or PD 98059 has no inhibitory effects on the activity of coenzyme A-independent transacylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号