共查询到19条相似文献,搜索用时 75 毫秒
1.
深度学习由于其强大的特征表示能力在图像处理、语音识别、推荐系统能领域取得了重大进展.论文提出了一种基于深度学习的针对视频对特定人进行检索的方法,该方法综合使用了MTCNN的人脸检测与对齐以及FaceNet的人脸识别功能,同时论文针对视频连续性的特点,对检索结果进行了特殊处理,实验结果表明论文方法具有较高的准确率和较快的... 相似文献
2.
Gabor核函数的幅值反映了图像局部的能量,且在真实边缘附近具有良好的光滑性,适宜于匹配识别;AdaBoost算法用于Gabor特征集中选择最优特征.每个特征对应一个弱非类器,集合所有弱分类器组成一个最终分类器.构建了基于上述特征的人脸定位评估函数.实验表明,其对主动外观模型和主动形状模型的人脸定位有很好的评估功能. 相似文献
3.
人脸检测在人机界面、安全系统、人脸识别、基于内容的图像检索等不同应用中起着重要作用。随着计算机图像技术的发展,人脸检测的方法也越来越多。但是利用现有的人脸检测方法检测重叠人脸时,虽然能够检测出部分人脸,但是相比于单人脸的检测,算法的效率和准确性都有所欠缺。针对这个问题,提出了一种基于深度学习的重叠人脸检测方法。首先基于机器学习方法,构建出多个人脸特征分类器,然后再利用肤色检测的方法对分类器得到的候选人脸进行二次检测,最后利用提出的一种NMS算法对候选人脸进行进一步的处理,从而检测出精确的人脸。为了验证算法的高效性和准确性,进行了多个人脸检测算法的对比实验,结果表明,该算法在效率和准确性方面都有较大提高。 相似文献
4.
人脸图像质量评估标准 总被引:3,自引:0,他引:3
输入图像的质量严重影响生物识别系统的精度.生物识别系统中大部分的匹配错误都是由低质量的输入图像导致的,这也是目前大部分生物识别系统的弱点所在.提出人脸图像质量评估的标准化方法,提出基于人脸对称性的方法评价人脸识别中的非对称光照和不正确姿态问题.阐述了人脸对称性的概念和评估方法;实验结果证明其有效性. 相似文献
5.
无约束场景下,低质量的人脸图像不仅浪费计算资源而且降低系统识别率.针对此问题,提出一种基于人脸识别的人脸质量评估方法对人脸图像进行预评估.以人脸识别系统特征提取网络为基础网络在COX数据集上进行微调,并使用微调后网络对COX数据集进行质量分数标定.最后,结合基础网络及质量预测网络并以相应损失函数在标定数据上进行回归学习以获取质量评估模型.实验结果表明,该方法能够有效区分不同质量的人脸图像并提升人脸识别系统性能. 相似文献
6.
人脸识别是计算机视觉与图像处理领域的研究热点,基于Face Net网络模型的人脸智能识别系统,由于所需训练数据集大且对硬件资源条件要求较高,设计改进Facet Net的人脸智能识别算法。首先,通过MTCNN网络实现人脸图像非极大值抑制和边界框的回归问题;其次,把人脸对齐后的图像数据进行高斯归一化(Gaussian normalization)预处理后,再通过Facet Net算法网络模型进行训练。优化后的网络模型在LWF数据集上进行训练,实验验证得出改进后的人脸识别模型其平均误识率为0.06%,拒识率为5.13%和准确率为99.79%,并通过采集真实的人脸数据进行验证,均表现出了良好的识别效果。 相似文献
7.
8.
对于人脸表情识别,传统方法是先提取图像特征,再使用机器学习方法进行识别,这种方法不但特征提取过程复杂且泛化能力也差。为了达到更好的人脸表情识别效果,文中提出一种结合特征提取和卷积神经网络的人脸表情识别方法。首先使用基于Haar-like特征的AdaBoost算法对于数据库原始图片进行人脸区域检测,然后提取人脸区域局部二值模式(Local Binary Patterns,LBP)特征图,将其尺寸归一化后输入到改进的LeNet-5神经网络模型中进行识别。在CK+和JAFFE数据集上采用10折交叉验证方法进行实验,分别为98.19%和96.35%的准确率。实验结果表明该方法与其他主流方法相比在人脸表情识别上有一定的先进性和有效性。 相似文献
9.
针对目前基于深度学习的活体检测算法大都基于大型卷积神经网络的问题,提出一种基于轻量级网络MobileNetV2和特征融合的活体检测算法。首先,以改进的MobileNetV2为基础网络分别从RGB、HSV、LBP图中提取特征;然后,将得到的特征图堆叠在一起以进行特征层的融合;最后,从融合后的特征图中继续提取特征,并利用Softmax层作出真假人脸的判断。仿真结果显示,所提算法在NUAA数据集上的等错误率(EER)为0. 02%,在Siw数据集上的ACER(Average Classification Error Rate)为0. 75%,而且测试单张图像仅用时6 ms。实验结果表明:融合不同的信息可以获得更低的错误率,改进的轻量化网络保证了算法的高效性并满足实时性需求。 相似文献
10.
伴随着计算机网络体系的全面升级和进步,浅层网络和深层网络研究受到了社会各界的广泛关注,一定程度上推动了机器学习的发展进程.从人工神经网络方向传递算法到目前机械深度学习理念,真正实现了学术和工业的同步改革.本文对深度学习原理进行了分析,并集中阐释了基于深度学习的人脸表情识别方法,以供参考. 相似文献
11.
子空间技术是一种有效的人脸美感本征描述方法.为了克服单一子空间在人脸图像美感描述方面的不足,提出了一种基于主成分分析(PCA)与广义矩阵低秩逼近(Generalized low rank approximation matrix,GLRAM)双子空间的自动人脸美感分析方法.通过组合PCA和GLRAM子空间获取人脸美感特性的全局及局部本征描述,并利用高斯场模型(Gaussian field model,GF)构造组合子空间的内在几何结构关系.实验选用了一个光照、背景、表情、年龄和种族等变化比较显著的数据库,结果表明,提出的基于双子空间算法优于基于单一子空间的人脸美感分析方法. 相似文献
12.
针对人脸表情识别鲁棒性差,容易受身份信息干扰的问题,提出一种具有局部并行结构的深度神经网络识别算法。首先使用稀疏自编码算法训练得到不同尺度的卷积核,然后提取卷积核特征并作池化处理,使特征具有一定的平移不变性,最后采用与表情相关的7个并行的4层网络得到最终的分类结果。实验结果表明,在标准的人脸表情识别库上进行独立测试时,本文提出的局部并行深度神经网络的表情识别方法对测试集的人不出现在训练集中的情况有较好表现,相比其他算法更具有实用性。 相似文献
13.
14.
人脸属性识别是计算机视觉和模式识别领域的热门研究课题之一,对人脸图像的分析和理解具有重要的研究意义,同时在图像检索、人脸识别、微表情识别和推荐系统等诸多领域具有广泛的实际应用价值.随着深度学习的快速发展,目前国内外学者已提出许多基于深度学习的人脸属性识别(deep learning based facial attribute recognition, DFAR)方法.首先,阐述人脸属性识别方法的总体流程.接着,按照不同的模型构建方式,分别对基于部分的与基于整体的DFAR方法进行详细地概述与讨论.具体地,对基于部分的DFAR方法按是否采用规则区域定位进行分类,而对基于整体的DFAR方法则分别从基于单任务学习、基于多任务学习的角度进行区分,并对基于多任务学习的DFAR方法根据是否采用属性分组来进一步细分.然后介绍了常用的人脸属性识别数据集与评价指标,并对比与分析了新近提出的DFAR方法的性能.最后对DFAR方法的未来研究趋势进行展望. 相似文献
15.
基于人脸五官结构特征的表情识别研究 总被引:1,自引:0,他引:1
在对人脸表情识别的研究中,对人脸五官的结构特征进行了分析,提出了基于五官结构特征的方法进行人脸表情的识别,文章构造了一种新的表情特征向量权重函数对五官各结构特征向量进行离散化,并构建了一个表情识别分类器,实验表明文章所提出的表情识别方法是有效的。 相似文献
16.
局部二值模式(LBP)和韦伯局部描述算子(WLD)是两种图像的纹理描述算子,在图像的特征提取方面有较强的能力。为了更加准确地对人脸表情进行识别与分类,针对LBP在特征提取的过程中只考虑了中心像素点与周围的其他像素点的灰度值之差,WLD仅考虑中心像素点与周围像素点灰度值之间的激励强度与梯度方向关系的问题,提出一种新的特征提取算法—局部二值韦伯模式(LBWP)。首先对图像进行预处理,检验人脸和裁剪有效的表情区域,接着对图像进行LBWP特征提取,在特征提取之后采用SVM的分类器对表情进行识别和分类。该算法在CK+数据集和JAFFE数据集上进行实验仿真,识别率分别达到了97.14%和95.77%。实验结果验证了LBWP算法在表情识别方面的有效性,且丰富了人脸图像特征提取方法。 相似文献
17.
18.
和实验室环境不同,现实生活中的人脸表情图像场景复杂,其中最常见的局部遮挡问题会造成面部外观的显著改变,使得模型提取到的全局特征包含与情感无关的冗余信息从而降低了判别力.针对此问题,本文提出了一种结合对比学习和通道-空间注意力机制的人脸表情识别方法,学习各局部显著情感特征并关注局部特征与全局特征之间的关系.首先引入对比学习,通过特定的数据增强方法设计新的正负样本选取策略,对大量易获得的无标签情感数据进行预训练,学习具有感知遮挡能力的表征,再将此表征迁移到下游人脸表情识别任务以提高识别性能.在下游任务中,将每张人脸图像的表情分析问题转化为多个局部区域的情感检测问题,使用通道-空间注意力机制学习人脸不同局部区域的细粒度注意力图,并对加权特征进行融合,削弱遮挡内容带来的噪声影响,最后提出约束损失联合训练,优化最终用于分类的融合特征.实验结果表明,无论是在公开的非遮挡人脸表情数据集(RAFDB和FER2013)还是人工合成的遮挡人脸表情数据集上,所提方法都取得了与现有先进方法可媲美的结果. 相似文献
19.
提出了一种新的视频人脸表情识别方法. 该方法将识别过程分成人脸表情特征提取和分类2个部分,首先采用基于点跟踪的活动形状模型(ASM)从视频人脸中提取人脸表情几何特征;然后,采用一种新的局部支撑向量机分类器对表情进行分类. 在Cohn2Kanade数据库上对KNN、SVM、KNN2SVM和LSVM 4种分类器的比较实验结果验证了所提出方法的有效性. 相似文献