首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigation of assimilable organic carbon (AOC) in flemish drinking water   总被引:2,自引:0,他引:2  
The aim of the study was to investigate the drinking water supplied to majority of residents of Flanders in Belgium. Over 500 water samples were collected from different locations, after particular and complete treatment procedure to evaluate the efficiency of each treatment step in production of biologically stable drinking water. In this study assimilable organic carbon (AOC) was of our interest and was assumed as a parameter responsible for water biostability. The influence of seasons and temperature changes on AOC content was also taken into account. The AOC in most of the non-chlorinated product water of the studied treatment plants could not meet the biostability criteria of 10 mug/l, resulting in the mean AOC concentration of 50 microg/l. However, majority of the examined chlorinated water samples were consistent with proposed criteria of 50--100 microg/l for systems maintaining disinfectant residual. Here, mean AOC concentration of 72 microg/l was obtained. Granular activated carbon filtration was helpful in diminishing AOC content of drinking water; however, the nutrient removal was enhanced by biological process incorporated into water treatment (biological activated carbon filtration). Disinfection by means of chlorination and ozonation increased the water AOC concentration while the ultraviolet irradiation showed no impact on the AOC content. Examination of seasonal AOC variations showed similar fluctuations in six units with the highest values in summer and lowest in winter.  相似文献   

2.
Ozonation of natural surface water increases the concentration of oxygen-containing low molecular weight compounds. Many of these compounds support microbiological growth and as such are termed assimilable organic carbon (AOC). Phytoplankton can contribute substantially to the organic carbon load when surface water is used as source for drinking water treatment. We have investigated dissolved organic carbon (DOC) formation from the ozonation of a pure culture of Scenedesmus vacuolatus under defined laboratory conditions, using a combination of DOC fractionation, analysis of selected organic acids, aldehydes and ketones, and an AOC bioassay. Ozonation of algae caused a substantial increase in the concentration of DOC and AOC, notably nearly instantaneously upon exposure to ozone. As a result of ozone exposure the algal cells shrunk, without disintegrating entirely, suggesting that DOC from the cell cytoplasm leaked through compromised cell membranes. We have further illustrated that the specific composition of newly formed AOC (as concentration of organic acids, aldehydes and ketones) in ozonated lake water differed in the presence and absence of additional algal biomass. It is therefore conceivable that strategies for the removal of phytoplankton before pre-ozonation should be considered during the design of drinking water treatment installations, particularly when surface water is used.  相似文献   

3.
The removal of natural organic matter (NOM) using nanofiltration (NF) is increasingly becoming an option for drinking water treatment. Low molecular weight (LMW) organic compounds are nevertheless only partially retained by such membranes. Bacterial regrowth and biofilm formation in the drinking water distribution system is favoured by the presence of such compounds, which in this context are considered as the assimilable organic carbon (AOC). In this study, the question of whether NF produces microbiologically stable water was addressed. Two NF membranes (cut-off of about 300 Da) were tested with different natural and synthetic water samples in a cross-flow filtration unit. NOM was characterised by liquid chromatography with organic carbon detection (LC-OCD) using a size-exclusion column in addition to specific organic acid measurements, while AOC was measured in a batch growth bioassay.Similarly to high molecular weight organic compounds like polysaccharides or humic substances that have a permeability lower than 1%, charged LMW organic compounds were efficiently retained by the NF membranes tested and showed a permeability lower than 3%. However, LMW neutrals and hydrophobic organic compounds permeate to a higher extent through the membranes and have a permeability of up to 6% and 12%, respectively. Furthermore, AOC was poorly retained by NF and the apparent AOC concentration measured in the permeated water was above the proposed limit for microbiologically stable water. This indicates that the drinking water produced by NF might be biologically unstable in the distribution system. Nevertheless, in comparison with the raw water, NF significantly reduced the AOC concentration.  相似文献   

4.
以上海市两座不同水源的典型水厂为研究对象,分析了可生物降解有机物(BOM)和总有机物(以DOC表征)在水厂常规净水工艺中的变化规律.结果表明,水厂常规工艺对AOC、BDOC与DOC的去除能力均不高,且受水温影响明显,两水厂出水均为生物不稳定性饮用水;DOC主要在沉淀单元被去除,BDOC在沉淀、砂滤单元都有去除,AOC则主要在砂滤单元被去除;加氯可造成DOC(或BDOC)向AOC的转化,使出厂水AOC浓度增加,要确保出厂水的生物稳定性,必须同步削减水中BOM与总有机物的浓度.  相似文献   

5.
按水中溶解性有机碳(DOC)的可生物降解性及其在活性炭上的可吸附性将其分为四类,考察了经生物活性炭滤池处理后水中四类有机碳的变化规律,并结合对有机碳分子质量的测定考察了生物活性炭滤池对不同分子质量区间有机碳的去除效果。结果表明。滤池在运行初期去除的DOC主要为可吸附性DOC;在其连续运行6个月后,能够有效去除的DOC则为可生物降解且可吸附性DOC;可被滤池去除的DOC主要分布在分子质量为(3~10)、(1~3)及〈0.5ku的范围内。生物活性炭的生物再生过程只能保证滤池对可生物降解且可吸附性DOC的持续去除能力。  相似文献   

6.
Greater Cincinnati Water Works (GCWW) evaluated the efficacy of ultraviolet light/hydrogen peroxide advanced oxidation (UV/H2O2) for reducing trace organic contaminants in natural water with varying water qualities. A year-long UV/H2O2 pilot study was conducted to examine a variety of seasonal and granular activated carbon (GAC) breakthrough conditions. The UV pilot-scale reactors were set to consistently achieve 80% atrazine degradation, allowing comparison of low pressure (LP) and medium pressure (MP) lamp technologies for by-product formation. Because hydroxyl radicals react non-selectively with organic compounds, unintended by-product formation occurred.Total assimilable organic carbon (AOC) concentration increased through the reactors from 14 to 33% on average, depending on water quality. Natural organic matter (NOM) contains the precursors for AOC production, so when post-GAC water (versus conventionally treated water) served as reactor influent, less AOC was produced. No appreciable difference in AOC concentration was observed between LP and MP UV reactors. The Spirillum strain NOX fraction of the AOC increased from 50 to 65% on average, depending on the quality of the water. The increase in this fraction of AOC occurred because oxidation of NOM yielded smaller more assimilable organic compounds such as organic acids that are necessary for NOX growth. The Pseudomonas fluorescens strain P17 AOC concentration increased only when conventionally treated plant water was used as pilot influent. This organism thrives in waters of differing organic energy sources, but does not thrive well in carboxylic acids alone. The CONV water had more overall TOC that could contribute to higher P17 AOC counts.Biofilm coupon studies indicated that biofilms with greater heterotrophic plate counts were observed in the granular activated carbon (GAC) effluent streams receiving UV/H2O2 pre-treatment. Biofilm coupon studies additionally indicated that the effluent stream of the GAC column proceeded by the MP reactor exhibited more viable biofilm than the other GAC effluent streams based on an ATP-bioluminescence method. The increased viability of the biofilm produced by the MP UV reactor is likely a result of the multiple UV wavelengths and higher energy input characteristic of this technology.  相似文献   

7.
Several researchers have reported phosphorus growth limitations of heterotrophic bacteria instead of main energy source--organic carbon. Usually this phenomenon was noticed in waters with high organic carbon content, where phosphorus concentration was deficient to maintain the growth on level suggested by high organic carbon amount. We analysed the microbially available phosphorus (MAP) and assimilable organic carbon (AOC) in several drinking waters in Flanders, Belgium. Our aim was the investigation whether organic carbon or phosphorus is the restricting nutrient in specific water and determination of the impact of some treatment processes on MAP content. We obtained a wide range of MAP concentrations being from 0.3 to 15.2 microg P-PO(4)/l in finished drinking water. In a treatment unit applying ozone, MAP was found to be the nutrient that limits bacterial growth instead of organic carbon. Moreover, ozone caused slight MAP decrease. Granular activated carbon (GAC) filtration was able to diminish further the MAP content significantly but not below a certain level. The biofilm monitor supplied with the MAP-limited water resulted in significantly lower biofilm formation rate (BFR) value than the same installation fed with AOC-limited water.  相似文献   

8.
MM Bazri  B Barbeau  M Mohseni 《Water research》2012,46(16):5297-5304
The presence of natural organic matter (NOM) poses several challenges to the commercial practice of UV/H2O2 process for micropollutant removal. During the commercial application of UV/H2O2 advanced oxidation treatment, NOM is broken down into smaller species potentially affecting biostability by increasing Assimilable Organic Carbon (AOC) and Biodegradable Organic Carbon (BDOC) of water. This work investigated the potential impact of UV/H2O2 treatment on the molecular weight distribution of NOM and biostability of different water sources. A recently developed flow cytometric method for enumeration of bacteria was utilized to assess biological stability of the treated water at various stages through measurement of AOC. BDOC was also assessed for comparison and to better study the biostability of water. Both AOC and BDOC increased by about 3-4 times over the course of treatment, indicating the reduction of biological stability. Initial TOC and the source of NOM were found to be influencing the biostability profile of the treated water. Using high performance size exclusion chromatography, a wide range of organic molecule weights were found responsible for AOC increase; however, low molecular weight organics seemed to contribute more. Positive and meaningful correlations were observed between BDOC and AOC of different waters that underwent different treatments.  相似文献   

9.
A sensitive short-term mutagenicity test, the microscale fluctuation test has been coupled with a concentration method based on adsorption on Sep-PakR C18 cartridges as a method for screening drinking water mutagens. Comparison with XAD-2 concentration method showed that Sep-Pak adsorbed 5 times higher quantity of organics but was slightly less efficient for adsorbing TOX.Microscale fluctuation test was found to be more sensitive than Ames test by testing known direct-acting mutagens and concentrates of drinking water. Samples derived from conventional treatment including chlorination from eight surface water supplies in Norway were concentrated at pH 2 by adsorption on the disposable columns. The adsorbates were tested at different doses by the microscale fluctuation assay. The mutagenic properties of drinking water samples were also related to total organic carbon (TOC), total organic halogen (TOX) and trihalomethanes (THM) concentrations. Dose-related mutagenic responses were found for all the samples with S. typhimurium TA 100 and TA98 strains without metabolic activation. Good relationship was found between mutagenicity data and TOX and THM results. The method showed to be simple, rapid and suitable for routine screening of mutagens in drinking water.  相似文献   

10.
A simple, sensitive, and selective solid phase extraction – ultra-fast liquid chromatography – tandem mass spectrometry (SPE-UFLC-MS/MS) method was developed and applied for the analysis of selected important pharmaceutical compounds in source and finished drinking waters. The method detected the following six pharmaceuticals, cotinine, cephapirin, ciprofloxacin, enrofloxacein, azithromycin, and diphenhydramine, at sub-μg/L level in multiple water matrices after pre-concentration by SPE. Cotinine-d3 and 13C315 N-Ciprofloxacin were used as internal standards for accurate quantitation. This method was validated through spike recoveries (67–129%), reproducibility (RSD: 2.3–15.7%), and method detection limits (MDLs: 2–5 ng/L). The method was used to test for occurrence of these pharmaceuticals in source and drinking waters from 13 Missouri water treatment facilities in four different seasons. In general, higher detection frequency and concentrations of pharmaceuticals were observed in colder months due presumably to less dilution (at lower flows) and slower degradation. The PPCP removals by different activated carbons were also evaluated. The occurrence and removal results in this study provide valuable information to help water treatment facilities taking appropriate strategies for better control of trace pharmaceuticals in drinking water.  相似文献   

11.
Fabris R  Chow CW  Drikas M  Eikebrokk B 《Water research》2008,42(15):4188-4196
Observations from many countries around the world during the past 10-20 years indicate increasing natural organic matter (NOM) concentration levels in water sources, due to issues such as global warming, changes in soil acidification, increased drought severity and more intensive rain events. In addition to the trend towards increasing NOM concentration, the character of NOM can vary with source and time (season). The great seasonal variability and the trend towards elevated NOM concentration levels impose challenges to the water industry and the water treatment facilities in terms of operational optimisation and proper process control. The aim of this investigation was to compare selected raw and conventionally treated drinking water sources from different hemispheres with regard to NOM character which may lead to better understanding of the impact of source water on water treatment. Results from the analyses of selected Norwegian and Australian water samples showed that Norwegian NOM exhibited greater humic nature, indicating a stronger bias of allochthonous versus autochthonous organic origin. Similarly, Norwegian source waters had higher average molecular weights than Australian waters. Following coagulation treatment, the organic character of the recalcitrant NOM in both countries was similar. Differences in organic character of these source waters after treatment were found to be related to treatment practice rather than origin of the source water. The characterisation techniques employed also enabled identification of the coagulation processes which were not necessarily optimised for dissolved organic carbon (DOC) removal. The reactivity with chlorine as well as trihalomethane formation potential (THMFP) of the treated waters showed differences in behaviour between Norwegian and Australian sources that appeared to be related to residual higher molecular weight organic material. By evaluation of changes in specific molecular weight regions and disinfection parameters before and after treatment, correlations were found that relate treatment strategy to chlorine demand and DBP formation.  相似文献   

12.
Ozonation of drinking water results in the formation of low molecular weight (LMW) organic by-products. These compounds are easily utilisable by microorganisms and can result in biological instability of the water. In this study, we have combined a novel bioassay for assessment of assimilable organic carbon (AOC) with the detection of selected organic acids, aldehydes and ketones to study organic by-product formation during ozonation. We have investigated the kinetic evolution of LMW compounds as a function of ozone exposure. A substantial fraction of the organic compounds formed immediately upon exposure to ozone and organic acids comprised 60-80% of the newly formed AOC. Based on experiments performed with and without hydroxyl radical scavengers, we concluded that direct ozone reactions were mainly responsible for the formation of small organic compounds. It was also demonstrated that the laboratory-scale experiments are adequate models to describe the formation of LMW organic compounds during ozonation in full-scale treatment of surface water. Thus, the kinetic and mechanistic information gained during the laboratory-scale experiments can be utilised for upscaling to full-scale water treatment plants.  相似文献   

13.
Membrane coagulation bioreactor (MCBR) for drinking water treatment   总被引:2,自引:0,他引:2  
Tian JY  Liang H  Li X  You SJ  Tian S  Li GB 《Water research》2008,42(14):3910-3920
In this paper, a novel submerged ultrafiltration (UF) membrane coagulation bioreactor (MCBR) process was evaluated for drinking water treatment at a hydraulic retention time (HRT) as short as 0.5h. The MCBR performed well not only in the elimination of particulates and microorganisms, but also in almost complete nitrification and phosphate removal. As compared to membrane bioreactor (MBR), MCBR achieved much higher removal efficiencies of organic matter in terms of total organic carbon (TOC), permanganate index (COD(Mn)), dissolved organic carbon (DOC) and UV absorbance at 254nm (UV(254)), as well as corresponding trihalomethanes formation potential (THMFP) and haloacetic acids formation potential (HAAFP), due to polyaluminium chloride (PACl) coagulation in the bioreactor. However, the reduction of biodegradable dissolved organic carbon (BDOC) and assimilable organic carbon (AOC) by MCBR was only 8.2% and 10.1% higher than that by MBR, indicating that biodegradable organic matter (BOM) was mainly removed through biodegradation. On the other hand, the trans-membrane pressure (TMP) of MCBR developed much lower than that of MBR, which implies that coagulation in the bioreactor could mitigate membrane fouling. It was also identified that the removal of organic matter was accomplished through the combination of three unit effects: rejection by UF, biodegradation by microorganism and coagulation by PACl. During filtration operation, a fouling layer was formed on the membranes surface of both MCBR and MBR, which functioned as a second membrane for further separating organic matter.  相似文献   

14.
Yonkyu Choi 《Water research》2010,44(1):115-122
UV treatment is a cost-effective disinfection process for drinking water, but concerned to have negative effects on water quality in distribution system by changed DOM structure. In the study, the authors evaluated the effects of UV disinfection on the water quality in the distribution system by investigating structure of DOM, concentration of AOC, chlorine demand and DBP formation before and after UV disinfection process. Although UV treatment did not affect concentration of AOC and characteristics of DOM (e.g., DOC, UV254, SUVA254, the ratio of hydrophilic/hydrophobic fractions, and distribution of molecular weight) significantly, the increase of low molecular fraction was observed after UV treatment, in dry season. Chlorine demand and THMFP are also increased with chlorination of UV treated water. This implies that UV irradiation can cleave DOM, but molecular weights of broken DOM are not low enough to be used directly by microorganisms in distribution system. Nonetheless, modification of DOM structure can affect water quality of distribution system as it can increase chlorine demands and DBPs formation by post-chlorination.  相似文献   

15.
After having produced drinking water of high quality it is of vital interest to distribute the water without compromising its quality neither by recontamination nor by microbial regrowth. To minimize regrowth, the strategy of distributing biostable water is followed in several European countries. This implies on one hand the production of water that has a low level of growth-supporting nutrients, in particular organic carbon compounds, and, on the other hand, using materials for storage/distribution that have a low biofilm formation potential and from which only low amounts of total organic carbon (TOC) leach into the water phase. Currently, the approval of materials in contact with drinking water relies on two tests, a migration test and a biofilm formation test. Here we describe an extended migration testing procedure that allows to obtain information not only on the amount of chemical compounds but also on the amount of growth-supporting compounds leaching into the water. In short, the test developed combines several migration cycles and subsequent measurement of the TOC with a novel, fast and reliable test method for determining the assimilable organic carbon (AOC) in the migration waters. AOC gives an indication on the growth-supporting properties of the material. Thus, an initial characterisation of a material with respect to its suitability for usage in contact with drinking water can be performed in a single assay. Results obtained with the new assay for a number of materials typically used in drinking water and sanitary installations are reported.  相似文献   

16.
《Water research》1996,30(4):965-971
Microbial denitrification of drinking water was studied in laboratory columns packed with shredded newspapers. Newspaper served as the sole carbon and energy substrate as well as the only physical support for the microbial population. Complete removal of nitrate (100 mg 1−1) was readily achieved, without accumulation of nitrite. The treated water contained low dissolved organic carbon (4–10 mg 1−1). The cellulose-dependent denitrification process was sensitive to changes in temperature: nitrate removal rates at 14°C were approximately one third of the rates observed at 32°C. Pretreatment of newspaper with diluted NaOH or diluted HCl, or by autoclave did not improve the efficiency of the process. A time-dependent decay in denitrification rate was noticeable after several months of operation. The reasons for this phenomenon, which may be due to weakened adhesion of the bacteria to the substrate, are under investigation.  相似文献   

17.
In the last few years different methods for determining assimilable organic carbon (AOC) and biodegradable dissolved organic carbon (BDOC) in drinking water have been proposed. However, there is no agreement on the most suitable methods for the assessment of treatment processes. A comparison of six methods, one for AOC(P17) determination and five for BDOC determination, using water samples taken at different steps in a water-treatment process in Sant Joan Despí (Barcelona, Spain) is reported. Results show that the biodegradable matter values given by AOC measurements are substantially lower than those obtained using BDOC methods. The various BDOC methods do not differ significantly in their results.  相似文献   

18.
Changes in water quality in reclaimed water distribution systems are a major concern especially when considering the potential for growth of pathogenic microbes. A survey of 21 wastewater process configurations confirmed the high quality effluent produced using membrane bioreactor (MBR) technology, but suggests that other technologies can be operated to produce similar quality. Data from an intensive twelve-month sampling campaign in four reclaimed water utilities revealed the important trends for various organic carbon parameters including total organic carbon (TOC), biodegradable dissolved organic carbon (BDOC), and assimilable organic carbon (AOC). Of the four utilities, two were conventional wastewater treatment with open reservoir storage and two employed MBR technology with additional treatment including UV, ozone, and/or chlorine disinfection. Very high BDOC concentrations occurred in conventional systems, accounting for up to 50% of the TOC loading into the system. BDOC concentrations in two conventional plants averaged 1.4 and 6.3 mg/L and MBR plants averaged less than 0.6 mg/L BDOC. Although AOC showed wide variations, ranging from 100 to 2000 μg/L, the AOC concentrations in the conventional plants were typically 3-10 times higher than in the MBR systems. Pipe-loop studies designed to understand the impact of disinfection on the microbiology of reclaimed water in the distribution system revealed that chlorination will increase the level of biodegradable organic matter, thereby increasing the potential for microbial growth in the pipe network. This study concludes that biodegradable organic carbon is an important factor in the microbial quality and stability of reclaimed water and could impact the public health risk of reclaimed water at the point of use.  相似文献   

19.
Biofouling is a serious problem in industrial recirculating cooling systems. It damages equipment, through biocorrosion, and causes clogging and increased energy consumption, through decreased heat transfer. In this research a fixed-bed biofilter was developed which removed assimilable organic carbon (AOC) from process water, thus limiting the major substrate for the growth of biofouling. The biofilter was tested in a laboratory model recirculating cooling water system, including a heat exchanger and a cooling tower. A second identical model system without a biofilter served as a reference. Both installations were challenged with organic carbon (sucrose and yeast extract) to provoke biofouling. The biofilter improved the quality of the recirculating cooling water by reducing the AOC content, the ATP concentration, bacterial numbers (30-40 fold) and the turbidity (OD660). The process of biofouling in the heat exchangers, the process water pipelines and the cooling towers, was monitored by protein increase, heat transfer resistance, and chlorine demanded for maintenance. This revealed that biofouling was lower in the system with the biofilter compared to the reference installation. It was concluded that AOC removal through biofiltration provides an attractive, environmental-friendly means to reduce biofouling in industrial cooling systems.  相似文献   

20.
Optimization of coagulation and ozonation processes for removal of disinfection by–products (DBP) formation potential in raw water was conducted by a pilot scale system. Proper poly–aluminum–chloride–sulfates (PACS), pre–ozone and post–ozone dosages are required for improving the removal performance of DBP formation potential to guarantee the safety of drinking water. Considering the treatment performances and economic costs, the optimum PACS, pre–ozone and post–ozone dosages for treating raw water with high organic concentration should be around 8.9 mg/L Al2O3, 0.5 and 2.5 mg/L, respectively. The combined drinking water treatment system of pre–ozonation, coagulation/sedimentation, sand filtration, post–ozonation, granular activated carbon filtration and disinfection is a promising process to reduce DBP formation potential from raw water in southern China. Under the optimum conditions, this combined system removed total trihalomethanes and haloacetic acids formation potential 50.16 and 69.10%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号