共查询到17条相似文献,搜索用时 78 毫秒
2.
针对樽海鞘群算法求解精度不高和收敛速度慢等缺点,提出一种基于疯狂自适应的樽海鞘群算法.引入Tent混沌序列生成初始种群,以增加初始个体的多样性;在食物源位置上引入疯狂算子,增强种群的多样性;在追随者位置更新公式中引入自适应惯性权重,使算法的全局搜索和局部搜索能力得到更好的平衡.使用统计分析、收敛速度分析、Wilcoxon检验、经典基准函数和CEC2014函数的标准差评估改进樽海鞘群算法的效率.结果表明,改进算法具有更好的全局搜索能力和求解鲁棒性,同时,寻优精度和收敛速度也比原来算法有所增强,尤其在求解高维和多峰测试函数上,改进算法拥有更好的性能. 相似文献
3.
针对樽海鞘群算法寻优精度低、收敛速度慢和易陷入局部最优等缺点,提出一种基于自适应t分布与动态权重的樽海鞘群算法。首先,在领导者位置更新中引入蝴蝶优化算法中的全局搜索阶段公式,以此来增强全局探索能力;然后,在追随者位置更新中引入自适应动态权重因子来加强精英个体的引导作用,从而增强局部开发能力;最后,为了避免算法陷入局部最优,引入自适应t分布变异策略对最优个体进行变异。通过对12个基准测试函数进行求解,根据平均值、标准差、求解成功率、Wilcoxon检验和收敛曲线分析,表明所提出的算法要优于标准樽海鞘群算法,以及参与比较的其他改进樽海鞘群算法和其他群智能算法,说明了其在寻优精度和收敛速度方面都有显著提升,并且具备跳出局部最优的能力。通过将其应用在脱硝入口浓度最低点寻找上,验证了算法的有效性。 相似文献
4.
针对樽海鞘群算法收敛速度慢、易陷入局部最优等问题,提出了一种基于混沌映射的自适应樽海鞘群算法。在种群初始化阶段引入混沌映射来增强种群的多样性,提高算法的收敛速度;改进领导者的更新方式,同时加入自适应权重,提高算法的探索和开发能力;改进追随者的位置更新方式,减少追随者的盲目性。通过对10个测试函数进行仿真实验,并与其他优化算法进行比较,实验结果表明,在不改变原有时间复杂度的前提下,提出的算法在收敛速度和寻优精度上有较大的提升,具有更好的优化性能。 相似文献
5.
6.
针对基本樽海鞘群算法收敛速度慢、收敛精度低、易陷入局部最优的缺点,提出了一种融合黄金正弦混合变异的自适应樽海鞘群算法AGHSSA(Adaptive Salp Swarm Algorithm with Golden Sine Algorithm and Hybrid Mutation)。该算法引入了自适应变化的权重因子以加强精英个体的引导作用,提升收敛速度与精度。通过黄金正弦算法优化领导者位置更新方式,增强算法的全局搜索和局部开发能力。融合邻域重心反向学习与柯西变异对最优个体位置进行扰动,提升算法跳出局部最优的能力。通过对12个基准测试函数进行仿真实验来评估改进算法的寻优能力,实验结果表明,改进算法能显著提升寻优速度和精度,并且具备较强的跳出局部最优的能力。 相似文献
7.
8.
提出了种群进化速度和种群聚合度两个概念,并讨论了在全局收敛过程中惯性权重与两者之间的关系;考虑Sigmoid函数在线性与非线性之间呈现的平滑过渡性,从种群进化速度和种群聚合度两方面出发,提出了基于Sigmoid函数的惯性权重自适应调整方法。通过三个典型的多峰函数,将提出的算法(AS-PSO)与标准粒子群优化算法(SPSO)和基于Sigmoid函数的粒子群优化算法(S-PSO)进行了仿真分析比较,结果表明,AS-PSO算法相比其他两种算法,全局寻优能力更强,在一定程度上解决了收敛性能与全局寻优能力之间的矛盾。 相似文献
9.
为提升群海鞘群算法求解精度和收敛速度,提出了基于混沌映射动态惯性权重的群海鞘群算法.首先利用Tent混沌映射生成初始种群,计算种群适应度并保留最优个体作为初始食物源位置;将种群大小均分为领导者和追随者两部分以提高算法全局搜索能力,通过引入疯狂算子完成对领导者的位置更新;在追随者位置更新公式中,提出了基于精英保留及动态惯性权重的追随者位置更新策略,通过计算个体适应度值完成食物源的位置更新.实验结果表明,改进算法拥有更好的性能. 相似文献
10.
针对粒子收敛速度慢、搜索精度不高和算法性能在很大程度上依赖参数选取等缺点,提出了一种基于自适应惯性权重的均值粒子群优化算法。对算法中的惯性权重参数采用动态自适应变化方式,在迭代过程中根据粒子适应度差值将种群划分为三个等级,对不同等级的粒子采用不同的惯性权重策略,使粒子能根据自己所处的位置选择合适的惯性权重值,更快地收敛到全局最优位置;同时分别用个体极值和全局极值的线性组合取代PSO算法中的全局最优位置与个体最优位置。通过实验仿真与对比,验证了新算法性能优于标准PSO及其它一些改进的PSO算法,能够用较少的迭代次数找到最优解,具有更快的收敛速度和更高的收敛精度。 相似文献
11.
针对粒子群算法(Particle Swarm Optimization,PSO)易陷入局部极值的缺陷,提出了一种新的自适应惯性权重混沌PSO算法(a New Chaos Particle Swarm Optimization based on Adaptive Inertia Weight,CPSO-NAIW)。首先采用新的惯性权重自适应方法,很好地平衡粒子的搜索行为,减少算法陷入局部极值的概率,然后在算法陷入局部极值时,引入混沌优化策略,对群体极值位置进行调整,以使粒子搜索新的邻域和路径,增加算法摆脱局部极值的可能。最后,实验结果表明,CPSO-NAIW算法能有效避免陷入局部极值,提高算法性能。 相似文献
12.
惯性权重正弦调整的粒子群算法 总被引:1,自引:0,他引:1
通过对标准粒子群算法中惯性权重的分析,提出了一种惯性权重正弦调整的粒子群算法。运用差分方程对粒子速度变化过程和位置变化过程进行分析,得到了粒子群算法的收敛条件。通过对4个典型的函数的测试,实验结果表明该方法在收敛速度和全局收敛性方面都比标准粒子群算法和随机惯性权重粒子群算法有明显改进。理论分析和仿真实验验证了新算法的正确性和有效性。 相似文献
13.
14.
针对高维复杂函数优化,标准PSO算法收敛速度慢,易陷入局部最优点的缺点,提出一个惯性权重函数使算法的全局与局部搜索能力得到良好平衡,以达到快速收敛;并且该算法通过在后期进行变异操作,有效地增强了算法跳出局部最优解的能力。通过对三个典型的测试函数的优化所做的对比实验,表明改进的算法在求解质量和求解速度两方面都得到了好的结果。 相似文献
15.
针对岛屿模型的并行粒子群算法没有根本改变粒子速度更新的问题,提出一种自适应惯性权重的分组并行粒子群优化算法。该算法在迭代过程中能自适应地选择加入分组的数量,同时对各组粒子的惯性权重按照组内最优位置的变化进行自适应调整。各组运用多线程技术并行处理,粒子间采用新的信息共享的方式。仿真结果证实,该算法具有较高的收敛速度和收敛精度。 相似文献
16.
陈寿文 《计算机工程与应用》2015,51(5):58-64
针对标准粒子群优化算法易出现早熟收敛及寻优精度低等缺陷,提出一种基于双质心和自适应指数惯性权重的改进粒子群算法(DCAEPSO)。算法使用粒子搜到的最优解和当前解构造加权的种群质心和最优个体质心,结合使用自适应指数惯性权重调整了速度更新公式。通过几个典型测试函数仿真及Friedman和Holm检验,实验结果显示DCAEPSO比其他粒子群算法寻优能力强。 相似文献
17.
针对粒子群算法收敛速度慢和易陷入局部最优的问题,提出了基于惯性权重对数递减的粒子群算法,并引入对数调整因子,对数调整因子的不同取值保证了算法搜索成功率。选取八种典型函数分别进行给定迭代次数和给定精度的仿真实验,并与标准PSO算法、惯性权重线性递减PSO算法、惯性权重高斯函数递减PSO算法进行比较。测试结果表明,该策略可以简便高效地提高算法的全局收敛性和收敛速度,并且具有较好的稳定性。求解大多数优化问题时,即使不引入对数调整因子新算法就可以获得较好的效果。 相似文献