首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
以氯气(Cl2)为Fe2+和Co2+氧化的氧化剂、Na2CO3为沉淀剂,对镍电解阳极液—硫化氢除铜后液深度除铁钴、Cl2利用率和除铁钴渣成分进行了系统研究,用正交试验和单因素条件试验确立了最佳的Cl2氧化沉淀法除铁钴的最佳工艺条件,阐明了除铁钴渣中镍、铁、钴的存在形态。结果表明:Cl2氧化沉淀铁、镍和钴的反应均属于放热反应,能够自发进行,且热力学反应优先顺序为Fe2+>Co2+>Ni2+;正交试验和单因素条件试验结果一致,最佳的除铁钴工艺条件为:通Cl2前pH=5.0、通Cl2终点ORP=1 050 mV、反应终点pH≥4.5。在此条件下,Fe2+和Co2+去除率分别为99.8%和97%,Cl2利用率大于97%,除铁钴渣的Ni/...  相似文献   

2.
为解决高硅钴白合金中有价元素难以浸出的问题,在硫酸体系中,以氯酸钠作为氧化剂,并加入高硅钴白合金中的组成元素之一Fe3+作为氧化传质体,有效浸出了高硅钴白合金中的Co和Cu,并减少了Si的浸出。通过正交试验研究了初始Fe3+浓度、高硅钴白合金粒度和反应温度对浸出效率的影响,得到了优化工艺参数,并根据现实生产需求,确定了浸出成本更低的经济工艺参数。优化工艺参数为:起始Fe3+浓度为15 g/L,高硅钴白合金粒度为<0.075 mm,反应温度为85℃。其中,起始Fe3+浓度对浸出效率的影响最大。在优化工艺参数下浸出5.5 h, Co、Cu浸出率分别达到99.3%、98.7%。经济工艺参数为:起始Fe3+浓度为10 g/L,白合金粒度为0.075~0.150 mm,反应温度为85℃;浸出6.7 h后Co、Cu浸出率分别达到98.9%、98.5%。  相似文献   

3.
湿法炼锌流程中钴渣浸出液中含有高浓度的Fe2+和Mn2+,用分光光度法测定Co2+和Ni2+时,Fe2+-EDTA会严重干扰Co2+和Ni2+的测定;在用光度滴定法测定Zn2+和Co2+合量时,Ni2+对二甲酚橙指示剂具有封闭作用,Mn2+亦与EDTA螯合,导致滴定结果偏高。为消除Fe2+和Mn2+对Zn2+、Co2+和Ni2+测定的干扰,实验进行氧化分离Fe2+和Mn2+预处理,在NaAc/Hac缓冲体系下,以EDTA作显色剂用分光光度法测定Co2+、Ni2+。在波长466nm处,Co2+的线性范围为50~500mg/L时与吸光度呈线性,相关系数R2为0.9992;在384nm处,Ni2+的线性范围为50~500mg/L时与吸光度呈线性,相关系数R2为0.9998。根据分光光度法测出Ni2+物质的量,加入1.1倍的丁二酮肟以除去Ni2+,用二甲酚橙为指示剂,EDTA鳌合-光度滴定法测定Zn2+、Co2+合量,扣减Co2+含量得出Zn2+含量。选取4个锌湿法炼锌流程中钴渣浸出液实际样品,按照实验方法中的分光光度法测定Co2+和Ni2+,光度滴定法测定Zn2+、Co2+合量,Zn2+、Co2+和Ni2+测定结果的相对标准偏差(RSD,n=6)均不大于0.70%,加标回收率分别为99.59%~100.41%、99.69%~100.64%、99.92%~100.08%。  相似文献   

4.
钕铁硼磁材废料经回收稀土后产生大量的二次废料,针对该废料含铁量高的特点,对废料中的铁元素提取进行了相关研究,铁元素以硫酸亚铁产品形式回收。酸浸提铁阶段考察了酸浓度、浸提温度、反应时间、液固比(酸体积/废渣质量)、浸取次数等因素对铁离子浸出效果的影响,通过单因素实验得到较优的酸浸工艺参数:硫酸浓度6 mol/L、浸提温度80℃、反应时间120 min、液固比4∶1(mL/g)和浸取次数2次,在此条件下铁的浸出率约为97.8%。还原阶段考察了温度、反应时间及废铁屑过量系数等因素对Fe3+转化为Fe2+效果的影响,得到较优的还原工艺参数:还原温度为80℃、反应时间为120 min和废铁屑过量系数为1.2,在此优化条件下,Fe3+转化为Fe2+的转化率约为97.69%。最终采用浓缩、冷却结晶、重结晶的方法制得硫酸亚铁产品,产品纯度99.92%。  相似文献   

5.
为提高湿法炼锌效率,本文通过虚拟仿真计算绘制含锌物料的ε-pH图、优势区图,为锌湿法冶金浸出、焙烧等工序奠定理论基础。本文采用FactSage热力学软件对含有Fe、Cu、Pb、Cd的硫化锌矿、锌焙砂在不同温度条件下的ε-pH图以及硫化锌矿的Zn-S-O三元体系和Zn-Me-S-O四元体系的优势区图进行模拟计算。结果表明:硫化锌矿直接浸出时Zn2+浸出终点pH值大于Fe2+、Cu2+、Pb2+和Cd2+的浸出pH值;而锌焙砂热酸浸出时Fe2+、Fe3+、Cu2+的浸出终点pH值小于Zn2+,Pb2+、Cd2+浸出的pH值大于Zn2+,但Zn2+的浸出电位均低于Fe2+、Cu2+、Pb2+、Cd2+的浸出电位;对比2种不同...  相似文献   

6.
湿法炼锌赤铁矿法回收铟的主要工艺流程为利用二氧化硫还原浸出低酸浸出渣中的铟,还原浸出后液酸度约30 g/L,需要预先中和使酸度降至10 g/L,然后加入碳酸钙中和沉铟、富集铟,沉铟渣经浸出、净化、萃取等工艺流程回收铟。预中和过程中产生的石膏渣会夹带部分铟,造成铟的损失。本文通过进行单因素试验,研究预中和液中Fe3+浓度、终点酸度及反应时间等试验条件变化对预中和石膏渣含铟量、石膏渣沉降及过滤性能的影响。试验结果表明,由于In3+与Fe3+性质相似,在黄钠铁矾形成过程中,In3+可部分取代Fe3+形成晶间化合物进入渣中,因此Fe3+含量越高,预中和石膏渣含铟量越高;终点酸度小于10 g/L时,溶液中的Al、Si易生成胶状物,与Ca化合生成钙铝黄长石沉淀,影响矿浆沉降性能及过滤性能,终点酸越低,石膏渣含铟量越高,过滤性能越差;随着反应时间的延长,溶液中Fe2+氧化成Fe3+的量越多,石膏渣含铟量逐渐增加。  相似文献   

7.
为探究酸法地浸过程中Fe3+作为氧化剂时铀的浸出情况,通过使用模拟软件PHREEQE建立模型,观察浸出液各组分的浓度及迁移变化,揭示氧化剂Fe3+与浸出铀之间的关系。结果表明:作为氧化剂的Fe3+促使铀矿的溶解及Fe2+的出现,随着铀的浸出结束,Fe3+的浓度趋于稳定;且铀矿的溶解速率与Fe3+、Fe2+的增长速率密切相关。Fe3+的浓度增长变快时,Fe2+的浓度增长及铀矿的溶解也加快;随着铀矿的溶解速率降为零后,Fe2+的增长速率也趋近于零,氧化剂Fe3+的增长速率也降为零。  相似文献   

8.
某企业湿法炼锌氧化锌脱硫-空气氧化工艺存在氧化不彻底的问题,未被氧化彻底的ZnSO3与浸出沉矾工序中的Fe3+反应,将其还原为Fe2+,导致Fe2+含量偏高,沉矾上清液返回中性浸出工序时锰矿粉消耗增加。本文分析了制酸设备、焙烧投矿量、氧化温度、脱硫塔液位等因素对脱硫液空气氧化的影响,并提出了一系列改进措施,进行实验研究最佳空气氧化条件。实验结果表明,最佳空气氧化条件为:氧化温度40~45℃,反应时间3 h,空气压力0.15 MPa。经过措施改进,脱硫液氧化效果大大改善,降低了锰矿粉消耗,提高了电效。  相似文献   

9.
当分析元素含量极低时,往往要求在测定之前辅以化学分离预富集手段以纯化富集待测物和除去干扰基体。实验利用邻菲罗啉和硫氰酸钾作为微痕量Co2+的络合剂,建立了一种液固体系分离富集微痕量Co2+的新方法。分别考察了邻菲罗啉溶液用量、硫氰酸钾溶液用量、酸度对分离效率的影响。结果表明,当体系中Co2+含量为100 μg时,控制体系pH=2~6,加入1.00 mL 1.5 g/L邻菲罗啉溶液、1.00 mL 0.1 mol/L硫氰酸钾溶液、1.00 mL 10 g/L EDTA溶液、1.00 mL 40 g/L硫脲溶液,震荡静置后,Co2+与邻菲罗啉、硫氰酸钾反应生成的离子缔合物定量沉淀到溶液底部,而Cd2+、Fe3+、Zn2+、Ni2+、Cu2+、Pb2+、Al3+、Ag+等离子仍留在水相中,从而实现了Co2+与这些离子的定量分离。方法成功用于合成水样中微痕量Co2+的定量分离,富集率在97.2%~98.6%之间。  相似文献   

10.
以废旧三元正极材料作为原料,提出了还原焙烧与氨基磺酸浸出相结合的工艺,提高锂的回收效率,同时实现组分的分步分离回收。在焙烧温度650℃、碳用量10%、还原焙烧时间90 min条件下,三元正极材料被还原为Li2CO3、NiO、MnO、Ni、Co的混合物,还原焙烧产物分步浸出,水浸回收锂,酸浸回收镍、钴、锰。采用氨基磺酸浸出水浸渣,最佳酸浸条件:氨基磺酸浓度0.75 mol/L、浸出温度60℃、固液比28 g/L、浸出时间40 min,此条件下镍、钴、锰的浸出率分别可以达到98.77%、98.71%、98.45%。  相似文献   

11.
从氧化钴矿石中提取钴的试验研究   总被引:2,自引:0,他引:2  
研究了从氧化钴矿石中回收钴.通过两段浸出,浸出渣中钴质量分数小于0.5%,钴浸出率达99%.通过黄钾铁钒法除铁,氟化钠法除钙、镁,亚硫酸钠法除铜,P204串级萃取法进一步去除杂质Fe、Ca、Mg、Cu、Zn、Mn、Pb、As等,P507萃取分离钴镍,最后通过沉淀得草酸钴产品,产品纯度符合要求.  相似文献   

12.
复杂含钴物料提取钴   总被引:1,自引:0,他引:1  
介绍从复杂含 钴物料中提 取钴的全 湿法工 艺流程。本工艺 具有钴 回收率高,环境污染小和综合回收有价金属等特点。  相似文献   

13.
微乳液介质-分光光度法直接测定异辛酸钴中钴   总被引:4,自引:1,他引:3       下载免费PDF全文
“微乳液”这个概念是1959年由英国化学家JHSchulman 提出的[1],微乳液一般是由表面活性剂、助表面活性剂、油、水等组分在适当比例下组成的无色、透明(或半透明)、低粘度的热力学稳定体系,它具有超低界面张力和很高的增溶能力[2]。微乳液介质一分光光度法测定Co2+已有报导[3]。异辛酸钻主要用作油漆催干剂,在原子灰中也有应用。由于它为油类物质,因而按常规分析方法,需对试样进行灰化或革取处理,操作繁琐。本文以5—Br—PADAP为显色剂,借助微乳液的特殊组成与特性,以微乳液为介质,实现了对…  相似文献   

14.
The oxygen concentration of liquid cobalt in equilibrium with cobalt aluminate and alumina was measured by suction sampling at temperatures in the range of 1783 to 1873 K. Experiments were made with cobalt of high and low initial oxygen content and with the addition of cobalt aluminate. The Gibbs free energy of the formation of cobalt aluminate in equilibrium with cobalt containing dissolved oxygen and alumina is: Co (l) + (1+x) Al2O3 + [O]1 wt% in Co = CoO·(1+x)Al2O3 with ΔG° = ‐(226400 ± 8730) + (93.04 ± 4.74) T [J/mol]. The oxygen partial pressure in equilibrium with the dissolved oxygen in molten cobalt was determined by zirconia stabilized with magnesia oxygen sensors. The Gibbs standard free energy of dissolution of oxygen in molten cobalt in the range of 1783 to 1873 K is: 1/2 O2 = [O]1 wt% in Co with ΔG° = ‐76410 – 2.16 T [J/g·atom].  相似文献   

15.
采用矿浆电解工艺处理高锰含钴物料,可以使物料中的大部分锰以MnO2的形态在阳极析出。较常规处理工艺,所得到的含钴溶液中的钴锰比可以由1∶3升高至4∶3,需净化处理的锰金属量降低3/4,每吨Co的试剂消耗费用可以降低1万元以上。  相似文献   

16.
在400—580℃温度范围内用氢气将草酸钴和氧化钴还原为金属钴粉,研究了原料粒度和还原温度对钴粉粒度、比表面、松装密度和摇实密度的影响,讨论了还原期间在不同原料表面上发生的局部化学反应机理。结果表明,用草酸钴可制得具有费氏粒度0.5μm、BET 比表面400000cm~2/cm~3的极细钴粉,得自草酸钴的钴粉还具有易于研磨的脆性多孔结构。对于形成多孔产物相的固体物质的分解和还原反应,作者推出了产物核心粒度的计算式。D=1.96(V′/V~p)~(1/2)(G/N)~(1/3)=1.96(V′/V~p)~(1/2)·A·e~(-(E_g-E_(?))/(3RT))  相似文献   

17.
从湿法炼锌除钴渣的浸出液中分离钴的研究   总被引:1,自引:1,他引:1  
从理论上分析了用氧化剂将湿法炼锌除钴渣浸出溶液中的Co(Ⅱ)氧化成Co(Ⅲ),使钴以Co(OH)3的形式沉淀出的可能性,考察了温度、pH、凝聚剂对钴氧化沉淀的影响,初步确定出溶液中钴氧化沉淀的较优条件,并对沉淀的颗粒进行了X 射线衍射分析,拍摄了颗粒的SEM照片。  相似文献   

18.
南非钴精矿中钴量的测定   总被引:2,自引:0,他引:2  
在氨性条件下,钴(Ⅱ)与铁氰化钾进行氧化还原反应,用电位滴定法测定钴的含量,锰(Ⅱ)的存在使测定结果偏高,须从总量中减去。  相似文献   

19.
以某厂含钴水相为研究对象,在实验室开展了高纯氧化钴或草酸钴的制备试验。试验结果表明,采用中和氧化除铁、氟化钠深度除钙镁、草酸铵或草酸沉钴、干燥和煅烧等步骤能够从含钴水相中制备得到高纯氧化钴和草酸钴,产品的各项技术指标要远远好于一级品氧化钴的指标。且整个流程钴的回收率达95%以上。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号