首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
An observatory of urban pollutants was created in Paris in order to assess, at the urban catchment scale, the quality of sanitary sewage and pollutant loads during dry weather periods in the Paris combined sewer. Investigations were carried out for six urban catchments (varying from 42 to 2580 ha) focusing on a wide range of parameters, including: suspended solids (SS), chemical and biochemical oxygen demand (COD and BOD5), total organic carbon (TOC), total Kjeldahl nitrogen (TKN), heavy metals (Cd, Cu, Pb, Zn), and aliphatic and polycyclic aromatic hydrocarbons (AHs and PAHs). Despite the marginal intra-site variability of some pollutants, which serves to reflect the impact of point sources, this work attests to the spatial homogeneity, at the physical scales considered, of wastewater quality and pollutant loads within the Paris combined sewer network. These results imply that similar production and transfer processes are occurring within sewers during dry weather periods and strongly suggest that data obtained on one specific catchment could be extrapolated to smaller or larger catchments that display quite similar land use and sewer characteristics.  相似文献   

2.
An observatory of urban pollutants was created in Paris for the purpose of assessing the dynamics of wastewater and wet weather flow (WW and WWF) pollutant loads within combined sewers. This observatory is composed of six urban catchments, covering land areas ranging in size from 42 ha to 2581 ha. For a wide array of parameters including total suspended solids (TSS), chemical and biochemical oxygen demand (COD and BOD5), total organic carbon (TOC), total Kjeldahl nitrogen (TKN), heavy metals (Cu and Zn) and polycyclic aromatic hydrocarbons (PAHs), this article is intended to evaluate the contributions of wastewater, runoff and in-sewer processes to WWF pollutant loads through the use of an entry–exit mass balance approach. To achieve this objective, a total of 16 rain events were sampled on these sites between May 2003 and February 2006. This study has confirmed that at the considered catchment scale (i.e. from 42 ha to 2581 ha) the production and transfer processes associated with WWF pollutant loads do not vary with basin scale. Entry–exit chemical mass balances over all catchments and for a large number of rain events indicate that wastewater constitutes the main source of organic and nitrogenous pollution, while runoff is the predominant source of Zn. For Cu, PAHs and TSS, the calculation underscores the major role played by in-sewer processes, specifically by sediment erosion, as a source of WWF pollution. A significant loss of dissolved metals was also observed during their transfer within the sewer network, likely as a consequence of the adsorption of dissolved metals on TSS and/or on sewer deposits. Moreover, the nature of eroded particles was examined and compared to the various sewer deposits. This comparison has highlighted that such particles exhibit similar organic and PAH contents to those measured in the organic layer, thus suggesting that the deposit eroded during a wet weather period is organic and of a nature comparable to the organic layer. Despite the extent of initial field investigations, no organic deposit was observed to be present on sewer lines within the catchments, which implies that this organic deposit is probably present in another form or to be found elsewhere in the main trunks.  相似文献   

3.
Variation in rates of sanitary hygiene products, toilet tissue and faeces occurring in sewers are presented for dry and wet weather from three steep upstream urban catchments with different economic, age and ethnic profiles. Results show, for example, that total daily solids per capita from the low income and ageing populations are almost twice that from high income or ethnic populations. Relative differences are verified through independent questionnaires. The relationship between solids stored in sewers prior to storms, antecedent dry weather period and the proportion of roof to total catchment area is quantified. A full solids’ flush occurs when storm flows exceed three times the peak dry weather flow. The data presented will assist urban drainage designers in managing pollution caused by the discharge of sewage solids.  相似文献   

4.
An on-site observatory of urban pollutant loads in combined sewers has been created in Paris in order to investigate wet weather pollutant loads at different spatial scales. This observatory is composed of six urban catchments, covering areas from 41 to 2581ha. For a wide range of parameters including suspended solids (SS), volatile suspended solids (VSS), chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total organic carbon (TOC), total Kjeldahl nitrogen (TKN), metals (Cd, Cu, Pb, Zn), aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (AHs and PAHs), this article serves to evaluate the potential scale effect on wet weather flow (WWF) quality. Although the extensive data set compiled herein has emphasized the high variability in WWF quality from one rain event to the next, no scale effect could be observed for a given rain event on pollutant concentrations, distributions between dissolved and particulate phases, pollutant contents and loads. Such results are of prime importance since they suggest (i) no spatial scale influence on WWF quality for the considered catchments and (ii) similar dominant sources and transfer processes at the various spatial scales.  相似文献   

5.
A comprehensive water quality monitoring program was conducted in the Yeongsan (YS) River, Korea from 2005 to present to investigate wet and dry weather pollutant discharge in an attempt to establish point and non-point pollution management strategies. As part of this monitoring program, 11 heavy metal species were measured during dry and wet weather conditions in the YS River, where Gwangju City (GJ), a subcatchment of the YS River, was further monitored to clarify the responsibility of different metal species discharged into the mainstream. Monthly grab water samples showed that greater amounts of metals along the YS River were discharged during the wet summer months due largely to storm runoff. In addition, further monitoring results revealed that GJ, a highly urbanized area, was a significant contributor of the heavy metals being discharged into the YS River during both wet and dry weather. The most abundant metal species discharged from GJ were manganese, aluminum and iron with different contributions of wet and dry weather flows to the total discharge load. Wet weather flow was a significant contributor to the annual dissolved metal loads, accounting for 44-93% of the annual load depending on the metal species, with the exception of chromium and cadmium (9% and 27%, respectively). Mostly, metal loads during wet weather were shown to be proportional to the rainfall depth and antecedent dry period. A substantial fraction of metals were also associated with solids, suggesting that sedimentation might be an appropriate management practice for reducing the metal load generated in GJ. Overall, although dissolved metal concentrations in YS River were at an acceptable level for aquatic community protection, continual metal discharge throughout the year was considered to be a potential problem in the long-term due to gradual water quality degradation as well as continuous metal accumulation in the system.  相似文献   

6.
The nature of trace element carriers contained in sewage and combined sewer overflow (CSO) was investigated by TEM-EDX-Electron diffraction and SEM-EDX. During dry weather, chalcophile elements were found to accumulate in sewer sediments as early diagenetic sulfide phases. The sulfurization of some metal alloys was also evidenced. Other heavy metal carriers detected in sewage include metal alloys, some iron oxihydroxide phases and neoformed phosphate minerals such as anapaite. During rain events, the detailed characterization of individual mineral species allowed to differentiate the contributions from various specific sources. Metal plating particles, barite from automobile brake, or rare earth oxides from catalytic exhaust pipes, originate from road runoff, whereas PbSn alloys and lead carbonates are attributed to zinc-works from roofs and paint from building siding. Soil contribution can be traced by the presence of clay minerals, iron oxihydroxides, zircons and rare earth phosphates. However, the most abundant heavy metal carriers in CSO samples were the sulfide particles eroded from sewer sediments. The evolution of relative abundances of trace element carriers during a single storm event, suggests that the pollution due to the "first flush" effect principally results from the sewer stock of sulfides and previously deposited metal alloys, rather than from urban surface runoff.  相似文献   

7.
Experiments performed on "Marais" catchment, in central Paris, aimed to follow up the quality of wet weather flows from the entry to the exit of a combined sewer network. SS, VSS, COD, BOD5, Cd, Cu, Pb, Zn concentrations were measured for an important number of rain events in roof, yard, street runoff, as well as in dry and wet weather flows at the catchment outlet. Mass entry-exit totals, at the scale of the catchment, were calculated over 31 rain events in order to evaluate the contribution of different types of runoff, of sanitary sewage and of sewer sediments to the total wet weather pollutant loads at the catchment outlet. The erosion of in-sewer pollutant stocks was found to be the main source of particles and of organic matter in wet weather flows, whereas heavy metal loads mainly originated from roof runoff, due to the corrosion of metallic roofs. Particles eroded inside the sewer during rain events were found to be quite different from the particles constituting the main part of sewer sediments: they are organic and biodegradable, with rather important settling velocities and seem to accumulate during dry weather periods. A change of the chemical form of heavy metals was noticed during the transport in the sewer and it is suspected that a fraction of the dissolved metals from the runoff is adsorbed on sewer sediments.  相似文献   

8.
Captured streams and springs may be flowing in combined sewers, increasing clean baseflow in pipes and wastewater treatment works (WwTWs), reducing pipe capacity and increasing treatment costs. The UK water industry is aware of this in principle, but there has been no explicit discussion of this in the published literature, nor have there been any known attempts to manage it. Instead, the current focus is on the similar intrusion of groundwater infiltration through pipe cracks and joints. We have conducted a thorough review of literature and international case studies to investigate stream and spring capture, finding several examples with convincing evidence that this occurs. We identify three modes of entry: capture by conversion, capture by interception, and direct spring capture. Methods to identify and quantify capture are limited, but the experience in Zurich suggests that it contributed 7–16% of the baseflow reaching WwTWs. There are negative impacts for the water industry in capital and operational expenditure, as well as environmental and social impacts of loss of urban streams. For a typical WwTW (Esholt, Bradford) with 16% of baseflow from captured streams and springs, we conservatively estimate annual costs of £2 million to £7 million. A detailed case study from Zurich is considered that has successfully separated captured baseflow into daylighted streams through the urban area, with multiple economic, environmental and social benefits. We conclude that there is a strong case for the UK water industry to consider captured streams and springs, quantify them, and assess the merits of managing them.  相似文献   

9.
《Urban Water Journal》2013,10(2):131-144
During wet weather, combined sewer system overflows affect the quality of water in watercourses. For planning overflows, the lowest possible load of priority substances according to Directive 2008/105/EC is crucial and the knowledge of variability in concentrations of elements in the sewer system is necessary. The behaviour of heavy metals in a sewer system was observed in the course of dry weather flow (DWF) and wet weather flow (WWF). We found, from the comparison of concentration medians for the WWF and DWF that during wet weather periods, an increase in the concentrations of As, Cr, Cd, Pb, Mn and Fe occurs in the sewer system and the effect of nonpoint sources manifests itself. Zn, Cu and Ni concentrations decreased during wet weather periods, and Hg concentrations did not significantly change. During the WWF period, a considerable nonhomogeneity of the sewage system was demonstrated.  相似文献   

10.
The present study examines the contribution of combined sewer overflows (CSO) to loads and concentrations of trace contaminants in receiving surface water. A simple method to assess the ratio of CSO to wastewater treatment plant (WWTP) effluents was applied to the urban River Spree in Berlin, Germany. The assessment indicated that annual loads are dominated by CSO for substances with removal in WWTP above ∼95%. Moreover, it showed that substances with high removal in WWTP can lead to concentration peaks in the river during CSO events. The calculated results could be verified based on eight years of monitoring data from the River Spree, collected between 2000 and 2007. Substances that are well removed in WWTP such as NTA (nitrilotriacetic acid) were found to occur in significantly increased concentration during CSO, while the concentration of substances that are poorly removable in WWTP such as EDTA (ethylenediaminetetraacetic acid) decreased in CSO-influenced samples due to dilution effects. The overall results indicate the potential importance of the CSO pathway of well-removable sewage-based trace contaminants to rivers. In particular, high concentrations during CSO events may be relevant for aquatic organisms. Given the results, it is suggested to include well-removable, sewage-based trace contaminants, a substance group often neglected in the past, in future studies on urban rivers in case of combined sewer systems. The presented methodology is suggested for a first assessment, since it is based solely on urban drainage data, which is available in most cities.  相似文献   

11.
《Urban Water Journal》2013,10(4):263-273
Increased impervious surface area is a consequence of urbanization, with correspondent and significant effects on the hydrologic cycle. It is intuitive that an increased proportion of impervious surface brings with it shorter lag times between onset of precipitation and subsequently higher runoff peaks and total volume of runoff in receiving waters. Yet, documentation on quantitative relationships between the extent and type of impervious area and these hydrologic factors remains dispersed across several disciplines. We present a literature review on this subject to better understand and synthesize distinctions among different types of impermeable surface and their relative impacts, and describe the manner in which these surfaces are assessed for their putative impacts on landscape hydrology.  相似文献   

12.
This paper presents a methodology for assessing TSS wet weather event load along with the associated uncertainties from continuous turbidity measurements. The proposed method is applied to dozens of rainfall events sampled on various urban catchments in the cities of Paris and Nantes. This method takes into account the dependency between the residual errors made by converting the turbidity values into TSS concentrations using an average TSS-turbidity relationship. Results obtained indicate that the inter-event variations of TSS-turbidity relationships induce significant systematic errors on TSS event loads which can reach ±30% of the average TSS event load.  相似文献   

13.
《Urban Water Journal》2013,10(4):201-214
In addition to assessing the impacts of water quality changes in urban rivers caused by storm water sewer overflows (SWO) and combined sewer overflows (CSO), the extent to which flow dynamics are changed by these structures must be understood in order to define hydrological assessment criteria to guide sustainable water management strategies as required by the European Community (EC) Water Framework Directive. In this study, the quantitative impacts of SWOs and CSOs on the flow dynamics of an urban river and their variability are investigated. For four single runoff events, hydrological measurements were accomplished in the River Dreisam, upstream and downstream of the city of Freiburg, in southwest Germany. As the catchment is widely free of urban areas upstream of the city, comparison with downstream locations allowed quantification of Freiburg's effects on the changes in the hydrograph on an event scale. The proposed hydrological parameter—flow acceleration, peak discharge, and discharge dosage—were shown to be appropriate to assess the impacts of SWOs and CSOs on flood hydrographs in urban rivers.  相似文献   

14.
This article presents a methodology for assessing annual wet weather Suspended Solids (SS) and Chemical Oxygen Demand (COD) loads in combined sewers, along with the associated uncertainties from continuous turbidity measurements. The proposed method is applied to data from various urban catchments in the cities of Paris and Nantes. The focus here concerns the impact of the number of rain events sampled for calibration (i.e. through establishing linear SS/turbidity or COD/turbidity relationships) on the uncertainty of annual pollutant load assessments. Two calculation methods are investigated, both of which rely on Monte Carlo simulations: random assignment of event-specific calibration relationships to each individual rain event, and the use of an overall relationship built from the entire available data set. Since results indicate a fairly low inter-event variability for calibration relationship parameters, an accurate assessment of pollutant loads can be derived, even when fewer than 10 events are sampled for calibration purposes. For operational applications, these results suggest that turbidity could provide a more precise evaluation of pollutant loads at lower cost than typical sampling methods.  相似文献   

15.
Subsurface vertical flow constructed wetlands (CWs) have been found to be a useful system to treat combined sewer overflow (CSO). The study presented uses numerical simulation to increase the understanding of the fundamental processes of COD degradation in CWs for CSO treatment. The multi-component reactive transport module CW2D was used for the simulation study. The simulation results showed that the measured behaviour of the system can only be modelled when COD adsorption is considered as additional process. A new parameter set for CW2D for modelling CSO treatment is presented. A range of values for COD adsorption parameters, COD fractionation and bacteria concentrations were estimated by an identifiability analysis. For the simulation a step wise approach was developed. On the one hand a lysimeter study was used for calibration and validation, and on the other hand field and lab-scale experiments were used for validation. Single-event simulations as well as long-term simulations were carried out. For the single-event simulations (lysimeter and field studies) a good match between measured and simulated data could be achieved. However, the long-term simulations showed that there is a need for further investigations mainly due to the uncertainties during long dry periods between the loadings.  相似文献   

16.
纵向通风隧道内火灾烟气流动的控制   总被引:1,自引:0,他引:1  
讨论了纵向通风隧道火灾和相关烟气形成现象。利用计算机流体动力模型模拟烟气流动,获得可以与试验数据进行比较的预测结果。在Richardson数字基础上,采用了不同参考稳定值,结果发现,直接利用火灾热释放速率所获得的温度值会产生最有用的结果。试验结果与数值预测结果的比较发现,两者吻合较好。笔者验证了利用容积测定火源模拟火灾的情况。结果的准确性很大程度上取决于对墙和屋顶的热传递。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号