首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
朱新峰  丁文武  张天平 《控制与决策》2022,37(10):2575-2584
研究具有输入量化和全状态约束的非严格反馈随机非线性系统的有限时间自适应跟踪控制.首先,利用双曲正切函数进行非线性映射,消除全状态约束的限制,将系统变换为无约束系统;其次,引入滞回量化器克服量化信号中的抖动和量化误差.为实现有限时间控制,提出概率意义下半全局有限时间稳定控制方法,加快系统的收敛速度,并在此基础上采用径向基函数神经网络逼近未知非线性函数;接着,基于动态面控制技术和高斯函数的性质,对变换后的非严格反馈随机系统进行自适应控制设计,所设计的控制器能够保证闭环系统中的所有信号在概率意义下有限时间稳定;最后通过仿真实验表明所设计控制方案的有效性.  相似文献   

2.
对一类具有未建模动态的严格反馈非线性系统,提出一种自适应神经网络动态面控制方案.该方案将动态面控制方法扩展到具有未建模动态的严格反馈非线性系统的控制器设计中,拓展了动态面控制方法的应用范围.利用动态面控制方法引入的紧集来处理未建模动态对于系统的影响.利用Young's不等式,提出两种自适应参数调节方案.与现有研究结果相比,有效地减少了可调参数的数目,放宽了动态不确定性的假设,无需虚拟控制增益系数导数的信息.通过理论分析,证明了闭环控制系统是半全局一致终结有界的,且跟踪误差收敛到原点的一个小邻域内.  相似文献   

3.
张天平  王敏 《控制与决策》2018,33(12):2113-2121
针对一类具有输入、状态未建模动态和非线性输入的耦合系统,提出一种自适应神经网络控制方案.利用径向基函数神经网络逼近未知非线性连续函数;引入动态信号和正则化信号处理状态及输入未建模动态;通过引入非线性映射,将具有时变输出约束的严格反馈系统化为不含约束的严格反馈系统.最后,通过理论分析验证闭环系统中所有信号是半全局一致最终有界的,仿真结果进一步验证了所提出控制方案的有效性.  相似文献   

4.
夏晓南  张天平 《控制与决策》2014,29(12):2129-2136
针对一类具有未建模动态和动态扰动且状态不可量测的非线性系统,利用神经网络逼近未知函数设计K-滤波器重构系统状态,提出一种自适应输出反馈控制策略。通过对未建模动态的新刻画,避免动态信号的引入。采用动态面设计方法,取消理论分析中产生的未知连续函数的估计,降低设计的复杂性。利用Lyapunov方法证明了闭环系统的所有信号是半全局一致终结有界的,并通过仿真结果验证了所提出方案的有效性。  相似文献   

5.

针对一类具有输入及状态未建模动态的非线性系统, 设计K滤波器来估计系统不可量测状态, 基于动态面控制技术并利用径向基函数神经网络的逼近能力, 提出一种输出反馈自适应跟踪控制方案. 利用Nussbaum 函数性质, 有效地解决了高频增益符号未知问题. 在控制器设计中引入规范化信号来约束输入未建模动态, 从而有效地抑制其产生的扰动. 通过理论分析证明了闭环控制系统是半全局一致终结有界的.

  相似文献   

6.
针对一类具有未建模动态和输出约束的输出反馈非线性系统, 提出一种自适应输出反馈动态面控制方案. 利用神经网络逼近未知连续函数, 分别设计K滤波器和动态信号估计不可测量的状态, 并处理动态不确定性. 引入障碍李雅普诺夫函数并设计自适应控制器以保证BLF有界, 从而实现输出约束. 理论分析表明, 闭环控制系统是半全局一致终结有界的, 且满足输出约束, 仿真结果验证了所提出方案的有效性.  相似文献   

7.
夏晓南  张天平  方宇  戴明生 《控制与决策》2022,37(11):2907-2916
全桥逆变器是一类典型的开关型非线性系统,系统中存在很多非线性和不确定因素,易导致系统性能下降,甚至造成不稳定.对于具有未建模动态和时变输出约束的单相全桥逆变器系统,利用动态信号处理未建模动态,设计辅助动态系统补偿控制信号,提出一种事件触发的自适应动态面跟踪控制策略;引入跟踪误差变换,解决输出约束问题;对控制输入进行约束,使用模糊系统调节参数向量的欧氏范数作为自适应参数,设计事件触发控制,这些技术的采用可有效降低控制器计算量,保证实际系统的可实现性,完善了具有输入约束条件下动态面控制方法的稳定性分析和证明.逆变器精确模型无需已知,实际控制系统具有较好的稳定性和鲁棒性.理论分析表明,闭环系统的所有信号半全局一致终结有界,所提出方案的有效性通过仿真实验得到进一步验证.  相似文献   

8.
针对具有传感器故障的一类严格反馈非线性系统, 提出一种有限时间自适应动态面容错控制策略. 考虑的 传感器故障包括: 固定偏差故障、漂移故障、精度下降及失效故障. 以反步法为主要设计依据, 利用模糊逻辑系统处 理模型中的未知函数. 该控制策略的显著优势在于结合有限时间理论、容错控制、模糊逻辑控制及动态面控制, 使 得系统无论发生故障与否, 均使得系统在原点处是半全局实际有限时间稳定, 同时保证系统的实际输出信号在有限 时间内跟踪期望信号, 且跟踪误差收敛于坐标原点的小邻域内. 另外, 通过采用动态面控制技术克服了传统反步法 中的计算复杂问题. 最后, 仿真算例证明了该设计方案的有效性.  相似文献   

9.
张天平  高志远 《控制与决策》2013,28(10):1541-1546
针对一类具有未建模动态的纯反馈非线性系统,提出一种自适应动态面控制方法。利用神经网络逼近未知连续函数,通过引入一种动态信号克服未建模动态。与现有结果相比,提出的设计方案简化了对未建模动态的处理过程,取消了神经网络逼近误差有界的假设。理论分析证明了该自适应控制方法能够保证闭环系统是半全局一致终结有界的,仿真结果验证了该方案的有效性。  相似文献   

10.
针对考虑全状态约束的永磁同步电动机系统,提出了一种基于指令滤波技术的神经网络自适应有限时间位置跟踪控制方案。首先,利用有限时间控制加快系统收敛、减小跟踪误差以及有效解决系统的负载转矩扰动问题;其次,引入指令滤波技术解决传统反步控制的“计算爆炸”问题,设计有限时间误差补偿机制抑制了滤波误差的影响;最后,运用神经网络自适应技术处理系统中未知的非线性函数,引入障碍Lyapunov函数确保系统的状态量被约束在预定义的紧集内。仿真和实验结果表明,该方法可以实现对期望信号快速有效的跟踪。  相似文献   

11.
This paper studies the output feedback tracking control problem for a class of strict‐feedback uncertain nonlinear systems with full state constraints and unmodeled dynamics using a prescribed performance adaptive neural dynamic surface control design approach. A nonlinear mapping technique is employed to address the state constraints. Radial basis function neural networks are utilized to approximate the unknown nonlinear functions. The unmodeled dynamics is addressed by introducing an available dynamic signal. Subsequently, we construct the controller and parameter adaptive laws using a backstepping technique. Based on Lyapunov stability theory, it is shown that all signals in the closed‐loop system are semiglobally uniformly ultimately bounded and that the tracking error always remains within the prescribed performance bound. Simulation results are presented to demonstrate the effectiveness of the proposed control scheme.  相似文献   

12.
In this paper, an adaptive finite-time controller is considered for a class of strict-feedback nonlinear systems with parametric uncertainties and full state constraints. Novel tan-type barrier Lyapunov functions are proposed to ensure the boundedness of the fictitious state tracking errors. A new tuning function is constructed to eliminate the effect of uncertainties by using the extended finite-time stability condition. It is shown that under the proposed backstepping control scheme the finite-time convergence of system output tracking error to a small set around zero is realised and the full state constraints are not violated. A numerical example is provided to demonstrate the effectiveness of the proposed finite-time control scheme.  相似文献   

13.
The finite-time command filter tracking control for a class of nonstrictly feedback nonlinear systems with unmodeled dynamics and full-state constraints is investigated in this paper. The hyperbolic tangent function is used as a nonlinear mapping technique to solve the obstacle of the full-state constraints. A new adaptive finite time control method is proposed through command filtering reverse engineering, and the shortcomings of the dynamic surface control (DSC) method are overcome by the error compensation mechanism. Dynamic signal is designed to handle dynamical uncertain terms. Normalization signal is designed to handle input unmodeled dynamics. Unknown nonlinear functions are approximated by radial basis function neural networks. Based on the Lyapunov stability theory, it is proved that all signals in the closed-loop system are semi-globally consistent and finally bounded and the output tracking error converges in finite time. Two numerical examples are utilized to verify the effectiveness of the proposed control approach.  相似文献   

14.
The fixed time event-triggered control for high-order nonlinear uncertain systems with time-varying full state constraints is investigated in this paper. First, the event-triggered control (ETC) mechanism is introduced to reduce the data transmission in the communication channel. In consideration of the physical constraints and engineering requirements, time-varying barrier Lyapunov function (BLF) is deployed to make all the system states confined in the given time-varying constraints. Then, the radial basis function neural networks (RBF NNs) are used to approximate the unknown nonlinear terms. Further, the fixed time stability strategy is deployed to make the system achieve semiglobal practical fixed time stability (SPFTS) and the convergence time is independent of the initial conditions. Finally, the proposed control scheme is verified by two simulation examples.  相似文献   

15.
This paper investigates a composite neural dynamic surface control (DSC) method for a class of pure‐feedback nonlinear systems in the case of unknown control gain signs and full‐state constraints. Neural networks are utilized to approximate the compound unknown functions, and the approximation errors of neural networks are applied in the design of updated adaptation laws. Comparing the proposed composite approximation method with the conventional ones, a faster and better approximation performance result can be obtained. Combining the composite neural networks approximation with the DSC technique, an improved composite neural adaptive control approach is designed for the considered nonlinear system. Then, together with the Lyapunov stability theory, all the variables of the closed‐loop system are semiglobal uniformly ultimately bounded. The infringements of full state constraints can be avoided in the case of unknown control gain signs as well as unknown disturbances. Finally, two simulation examples show the effectiveness and feasibility of the proposed results.  相似文献   

16.
This article realizes an adaptive finite-time sampled-data output-feedback stabilization for a class of fractional-order nonlinear systems with unmodeled dynamics and unavailable states. K-filters are constructed to estimate unavailable states, a dynamic signal is introduced to handle unmodeled dynamics and neural networks were used to approximate uncertain nonlinearities existed in stabilizer construction. With the help of backstepping technique, an adaptive sampled-data output-feedback stabilizer is exported, and such stabilizer with allowable design parameters and sampling period can render the corresponding closed-loop system reaches practically finite-time stable, which can be demonstrated by means of selected Lyapunov function candidates. In the end, two simulations with a numerical and an engineering examples are presented to verify the effectiveness of the proposed scheme.  相似文献   

17.
In this paper, for a class of uncertain nonlinear systems in the presence of inverse dynamics, output unmodeled dynamics and nonlinear uncertainties, a robust adaptive output‐feedback controller design is proposed by combining small‐gain theorem, changing supply function techniques with backstepping methods. It is shown that all the signals of the closed‐loop system are uniformly bounded in biased case, and the output can be regulated to a small neighborhood of the origin in unbiased case. Furthermore, under some additional assumptions, an asymptotical result is obtained. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号