首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了用改性膨润土吸附处理含铀(Ⅵ)废水,考察了废水pH、改性膨润土用量、溶液初始铀(Ⅵ)质量浓度、反应时间、温度对吸附反应的影响。结果表明:用NaCl和STAB(十八烷基三甲基溴化铵)改性的膨润土(Na-Bentonite,STAB-Bentonite)都可用于从废水中吸附铀(Ⅵ);溶液中铀初始质量浓度30 mg/L、温度25℃条件下,Na-Bentonite对铀的最大吸附容量为13.4 mg/g;在溶液pH=4、吸附时间120 min条件下,STAB-Bentonite对铀(Ⅵ)的吸附量为22.35mg/g,吸附过程符合准二级动力学模型,且受化学反应控制。  相似文献   

2.
《湿法冶金》2021,40(1)
研究了某铀尾矿场附近的稻田土壤对U(Ⅵ)的吸附性能,借助X射线衍射仪(XRD)对稻田土壤进行表征,考察了初始U(Ⅵ)质量浓度、固液质量体积比、溶液pH、吸附时间和温度等对稻田土壤吸附U(Ⅵ)的影响,分析了吸附反应动力学和热力学。结果表明:在溶液初始U(Ⅵ)质量浓度10 mg/L、固液质量体积比0.8 g/L、溶液pH=5.5、吸附时间120 min条件下,稻田土壤对U(Ⅵ)的吸附效果最佳,吸附量为8.3 mg/g;稻田土壤对U(Ⅵ)的吸附过程符合Langmuir等温吸附模型,为单分子层化学吸附,吸附反应自发吸热,为不可逆熵增反应;吸附动力学更符合准二级动力学模型。  相似文献   

3.
研究了以钛酸丁酯Ti(n-C4H9O)为原料,无水乙醇为有机溶剂,采用溶胶-凝胶法制备钛柱化剂,再用所制备钛柱化剂对膨润土进行钛柱撑钠化改性。借助SEM与XRD表征了钛柱撑改性膨润土的结构和物相。考察了溶液pH、吸附时间、改性膨润土用量对电镀废水中Cr(Ⅵ)吸附去除的影响及反应动力学和热力学。结果表明:改性后膨润土对电镀废水中Cr(Ⅵ)的去除效果明显;对100 mL初始质量浓度4.0 mg/L、pH=4.0的含Cr(Ⅵ)溶液,在改性膨润土用量10 g/L、室温9 min条件下吸附,Cr(Ⅵ)吸附率达98.0%;废水pH对Cr(Ⅵ)去除效果影响较大;吸附过程可用Langmuir等温吸附模型描述,Cr(Ⅵ)饱和吸附量为3.05 mg/g,吸附反应以化学吸附为主;钛柱撑改性膨润土的循环使用性能还需进一步改进,后续应采取复合改性方式进一步提高其对Cr(Ⅵ)的去除能力。  相似文献   

4.
为了绿色高效处理含铀废水,研究了用液相还原法制备多硫化钙改性纳米零价铁(CPS@nZVI)材料并用于去除溶液中U(Ⅵ),考察了CPS@nZVI对溶液中U(Ⅵ)的去除效果。并通过SEM-EDS、XPS和XRD对材料的形貌和表面物质组成进行表征。结果表明:在溶液pH=3.5、U(Ⅵ)初始质量浓度10.0 mg/L、固液质量体积比0.5 g/1 L、反应温度25℃、反应时间120 min条件下,CPS@nZVI材料对溶液中U(Ⅵ)去除率为98.13%,去除量为19.53 mg/g; SEM-EDS、XPS、XRD表征结果表明,样品主要由Fe0、FeS组成;反应过程符合准二级动力学模型和Langmuir等温吸附模型,该吸附过程受化学吸附控制,为单分子层吸附;还原过程符合伪一级还原动力学,溶液中的U(Ⅵ)以吸附和还原沉淀2种方式去除。  相似文献   

5.
通过溶剂热法制备了CaTiO3,并探究了溶液pH、固液比、U(Ⅵ)初始浓度、反应时间对U(Ⅵ)吸附效果的影响。吸附实验结果表明:在溶液pH为3.5,固液比为0.2 g/L、U(Ⅵ)初始浓度为25 mg/L、反应时间为100 min时,CaTiO3材料对U(Ⅵ)的吸附效果最好,去除率为98.06%,吸附容量为125.19 mg/g。  相似文献   

6.
利用一锅法制备了高岭土负载钛酸钙复合材料,研究了其对放射性废水中的U(Ⅵ)的吸附性能和机理。探讨了反应温度、U(Ⅵ)初始浓度、接触时间、固液比等对其吸附废水中U(Ⅵ)的影响,并进行了吸附动力学、热力学和等温吸附分析。结果表明,高岭土负载钛酸钙复合材料对废水中U(Ⅵ)有较好的吸附效果。当溶液pH=3.5、固液比0.4 g/L、反应时间60 min、反应温度25 ℃时,U(Ⅵ)的去除率达到最大值94.7%,最大吸附量为197.6 mg/g。高岭土负载钛酸钙吸附U(Ⅵ)的过程是一个自发且不可逆的吸热反应过程,符合准二级动力学模型和Freundlich等温吸附模型,表明其对U(Ⅵ)的吸附是物理吸附和化学吸附并存,以非均匀吸附为主的过程。  相似文献   

7.
利用液相还原法合成零价铁,并将零价铁负载在羟基磷灰石上,再以石英砂作为骨架,得到稳定型石英砂负载Fe~0-HAP复合材料。通过静态试验法,考察不同粒径石英砂负载Fe~0-HAP复合材料在不同时间、铀初始浓度、投加量、pH情况下对含铀废水中铀(Ⅵ)处理的效果。研究表明,复合材料对含铀废水中铀(Ⅵ)具有良好的处理效果,在0.30~0.60mm、0.60~1.18mm和1.18~2.36mm粒径复合材料投加量分别为0.1、0.1、0.2g,含铀废水pH=4,反应时间160min时,复合材料对含铀废水中的铀(Ⅵ)去除率达到80.60%~90.38%,吸附量8.060~9.038mg/g。复合材料去除含铀废水中铀(Ⅵ)更符合准二级动力学模型和Langmuir吸附等温线模型。  相似文献   

8.
研究了采用碳热还原法制备载铁花生壳生物炭FeCl-PSBT,确定了最优合成条件,并用于吸附废水中的铀。通过XRD、XPS、SEM、BET&BJH等表征了不同热解温度下FeCl-PSBT表面形态、比表面积、铁的存在形式。考察了各因素对FeCl-PSBT去除废水中U(Ⅵ)的影响,分析了吸附动力学和吸附等温线。结果表明:在热解温度为900℃、溶液初始pH=5、初始铀质量浓度20 mg/L、FeCl-PSBT投加量0.7 g/L、反应温度25℃条件下,U(Ⅵ)去除率达96.85%;吸附过程符合准二级动力学模型和Langmuir等温吸附模型;FeCl-PSB900中的Fe0和花生壳炭(PSB)对废水中U(Ⅵ)的去除有一定协同作用。  相似文献   

9.
《湿法冶金》2021,40(4)
研究了以野生满江红为原料制备满江红生物炭(AIC),再经KOH浸泡和微波辐照获得改性满江红生物炭(K-M-AIC)并用以吸附溶液中的U(Ⅵ),借助扫描电子显微镜、傅里叶红外光谱仪、元素分析表征了AIC、K-M-AIC及吸附U(Ⅵ)后的K-M-AIC的结构和性能,考察了K-M-AIC用量、体系pH、反应时间、初始U(Ⅵ)质量浓度对K-M-AIC吸附U(Ⅵ)的影响,采用准一级和准二级动力学模型、Langmuir和Freundlich等温吸附模型分析了吸附过程。结果表明:在体系pH=5、初始U(Ⅵ)质量浓度10 mg/L、K-M-AIC用量0.133 g/L、温度30℃条件下,U(Ⅵ)最大吸附量为124.903 mg/g;吸附过程更符合准二级动力学模型和Langmuir等温吸附模型。K-M-AIC生物材料可用于从溶液中吸附去除U(Ⅵ)。  相似文献   

10.
《湿法冶金》2021,40(4)
研究了用杨木炭制备载铁生物炭(FeBC)并用于从含铀矿井水中吸附铀,通过静态试验考察了溶液pH、初始铀质量浓度、反应时间、固液质量体积比、反应温度对FeBC吸附去除铀的影响;模拟某含铀矿井水化学组成,通过动态试验考察了FeBC对铀的吸附量及吸附性能。结果表明:在初始铀质量浓度20 mg/L、固液质量体积比0.1 g/100 mL、反应时间60 min、反应温度25℃条件下,FeBC对铀的吸附效果较好;在吸附原液铀质量浓度2 mg/L、流量5 mL/min条件下,用50 g FeBC吸附铀,铀吸附量为6.8 mg/g,饱和吸附量为7.2 mg/g,吸附性能良好。  相似文献   

11.
研究了以绿色廉价的保险粉(H2Na2S2O4)为还原剂、FeSO4为铁源,制备纳米零价铁(nZVI)并用于吸附废水中Cr(Ⅵ),考察了nZVI投加量、初始Cr(Ⅵ)质量浓度、模拟废水初始pH、反应时间和反应温度对Cr(Ⅵ)去除率的影响,并通过XRD、SEM对nZVI进行表征,结合吸附动力学、吸附等温线和颗粒内扩散模型试验探究去除机制。结果表明:所制得nZVI物相主要为α-Fe;在初始Cr(Ⅵ)质量浓度20 mg/L、nZVI投加量300 mg、吸附时间15 min、不调节pH条件下,用nZVI吸附1 L含Cr(Ⅵ)模拟废水,Cr(Ⅵ)吸附量为98.52 mg/g,去除率可达99.8%;吸附效果良好,且Cr(Ⅵ)的去除速率随温度升高而加快;nZVI对Cr(Ⅵ)的吸附过程符合Langmuir模型和准二级动力学模型。  相似文献   

12.
采用溶胶—凝胶法制备出钢渣负载羟基磷灰石复合材料,并通过静态试验方法探讨pH、复合材料投加量、反应时间及铀初始浓度对复合材料吸附水溶液中U(Ⅵ)的影响。结果表明,复合材料对U(Ⅵ)具有较好的去除性能,在pH=4、投加量0.4g、反应时间120min的条件下,对初始浓度5mg/L的水溶液中U(Ⅵ)的去除接近完全,对应吸附量为1.25mg/g。复合材料对U(Ⅵ)的吸附过程为化学吸附,符合准二级动力学模型(R~2=0.996 9);Langmuir吸附等温线模型拟合(R~2=0.999 1)表明,吸附过程为吸附剂表面上的单层吸附;且通过R_L(R_L 0.063)的计算表明,复合材料对U(Ⅵ)的吸附极其接近不可逆吸附。  相似文献   

13.
采用生物聚合硫酸铁絮凝剂对低浓度含铀废水进行絮凝试验研究,考察U(Ⅵ)溶液pH、絮凝剂投加量以及U(Ⅵ)初始浓度对絮凝效果的影响。结果表明,反应最佳pH范围在5~7,反应平衡时间为5min,其絮凝过程符合Lagergren准二级反应动力学模型。含铀废水经生物聚合硫酸铁絮凝处理过后,残余铀浓度低于《铀加工与燃料制造设施辐射防护规定》(EJ 1056—2005)中的排放限值(0.05mg/L)。  相似文献   

14.
研究了采用煅烧法制备铁钛改性钠基膨润土并用于从溶液中吸附Th(Ⅳ),考察了溶液pH、吸附剂用量、吸附时间、溶液中Th(Ⅳ)初始质量浓度、吸附温度对膨润土吸附Th(Ⅳ)的影响,借助多种手段表征了吸附Th(Ⅳ)前、后的膨润土。结果表明:铁、钛以粒状形式分布在钠基膨润土的表面或层间;在反应时间2.0 h、吸附剂用量10 mg、溶液pH=2.5条件下,改性钠基膨润土对初始Th(Ⅳ)质量浓度为200 mg/L的溶液中Th(Ⅳ)的吸附量为232 mg/g,比改性前提高到了1.45倍;吸附行为符合Langmuir等温吸附模型和准二级动力学模型,吸附反应属于熵增吸热自发过程,吸附机制主要为表面配合和离子交换。  相似文献   

15.
以水热合成法制备CoFe_2O_4材料,考察溶液pH、固液比、时间、温度、初始U(Ⅵ)浓度等对CoFe_2O_4吸附溶液中U(Ⅵ)的影响。用扫描电镜(SEM)对材料进行表征,分析其去除U(Ⅵ)的机理。结果表明,CoFe_2O_4对U(Ⅵ)有很好的去除效果,在pH为5.5、固液比0.3g/L、反应时间120min、U(Ⅵ)溶液浓度30mg/L条件下,U(Ⅵ)最大吸附容量为73.9mg/g。  相似文献   

16.
研究了用CTAB改性铁柱撑膨润土制备CTAB-Fe-BNT吸附材料,并用于吸附废水中低浓度铀。采用SEM、XRD、BET、FT-IR表征了CTAB-Fe-BNT形貌、物相、比表面积及官能团,考察了溶液pH、温度、CTAB-Fe-BNT用量和吸附时间对吸附铀的影响,探讨了吸附动力学、热力学及吸附机制。结果表明:针对质量浓度10 mg/L、体积50 mL的含铀废水,在溶液pH=7、CTAB-Fe-BNT用量1 g/L、反应时间60 min、温度25℃、振荡速度165 r/min最佳条件下,铀平均吸附率达94.2%,最大吸附量为710.1 mg/g; CTAB-Fe-BNT循环使用5次后,铀吸附率仍保持在92%左右;吸附过程以化学吸附为主。CTAB-Fe-BNT有望用于从废水中去除铀。  相似文献   

17.
《中国钨业》2020,(2):45-50
目前离子交后液回收钨冶炼废水中磷含量普遍高于国家排放标准,亟待开发出高效、低成本的除磷工艺。研究提出了采用MnO从钨冶炼废水中吸附除磷工艺,考察了液固比、pH、温度、反应时间和搅拌速度对含磷模拟液除磷效果的影响。优化后的结果表明,在液固比为67∶1、废水初始pH值为2、反应时间为50 min、反应温度为40℃、搅拌速度为200 rpm的条件下,对实际钨冶炼废水的除磷率高达96%,磷含量降至0.358 mg/L,达到工业废水磷排放标准。采用Langmuir等温吸附模型,揭示该过程属于单分子层饱和吸附,拟二级动力学模型结果表明吸附过程受化学反应控制。  相似文献   

18.
采用LSU-1离子交换树脂从CO_2+O_2地浸液中吸附U(Ⅵ)。在中性条件下,LSU-1树脂能够有效吸附U(Ⅵ);当pH=7,U(Ⅵ)初始浓度为300mg/L时,树脂吸附容量为141.42mg/mL。吸附过程符合Langmuir吸附等温模型(R~2=0.998)和准二级动力学模型(R~2=0.991)。动态试验表明,树脂吸附容量为140.52mg/mL,与静态吸附试验相吻合;采用0.5mol/L NaCl和0.5mol/L Na_2CO_3的混合溶液淋洗,能成功将铀洗脱,适用于CO_2+O_2采铀工艺。  相似文献   

19.
通过液相还原法制备了岩棉负载纳米零价铝(RW-NZVAl),利用SEM和XRD对材料进行了表征,探究了纳米零价铝负载量、溶液pH、U(Ⅵ)初始浓度、固液比、温度、反应时间等对RW-NZVAl去除溶液中U(Ⅵ)的影响。结果表明,RW-NZVAl对溶液中U(Ⅵ)有很好的去除效果,当岩棉与纳米零价铝质量比为4︰1、溶液pH=4.0、U(Ⅵ)初始浓度25 mg/L、固液比0.4 g/L、温度25 ℃、反应时间150 min时,RW-NZVAl对溶液中U(Ⅵ)的去除率为93.21%,去除量为58.26 mg/g。  相似文献   

20.
以氧化后的废纸为交联剂固定废弃农作物中的柿单宁,采用“以废治废”的方法吸附水中的铀(Ⅵ)。通过间歇法来考察柿单宁改性废纸(DAWP-PT)在不同pH、不同时间和不同转速下对铀(Ⅵ)的吸附量。结果表明,DAWP-PT对铀(Ⅵ)的吸附符合Langmuir和准二级动力学模型,为自发吸热熵增的吸附过程。DAWP-PT有望为含铀废水的治理提供一种全新的高效、无污染、低成本的吸附剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号