首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we demonstrate an SiGe HBT ultra-wideband (UWB) low-noise amplifier (LNA), achieved by a newly proposed methodology, which takes advantage of the Miller effect for UWB input impedance matching and the inductive shunt-shunt feedback technique for bandwidth extension by pole-zero cancellation. The SiGe UWB LNA dissipates 25.8-mW power and achieves S11 below -10 dB for frequencies from 3 to 14 GHz (except for a small range from 10 to 11 GHz, which is below -9 dB), flat S21 of 24.6 plusmn 1.5 dB for frequencies from 3 to 11.6 GHz, noise figure of 2.5 and 5.8 dB at 3 and 10 GHz, respectively, and good phase linearity property (group-delay variation is only plusmn28 ps across the entire band). The measured 1-dB compression point (P1 dB) and input third-order intermodulation point are -25.5 and -17 dBm, respectively, at 5.4 GHz.  相似文献   

2.
Algorithmic Design of CMOS LNAs and PAs for 60-GHz Radio   总被引:5,自引:0,他引:5  
Sixty-gigahertz power (PA) and low-noise (LNA) amplifiers have been implemented, based on algorithmic design methodologies for mm-wave CMOS amplifiers, in a 90-nm RF-CMOS process with thick 9-metal-layer Cu backend and transistor fT/fMAX of 120 GHz/200 GHz. The PA, fabricated for the first time in CMOS at 60 GHz, operates from a 1.5-V supply with 5.2 dB power gain, a 3-dB bandwidth >13 GHz, a P 1dB of +6.4 dBm with 7% PAE and a saturated output power of +9.3 dBm at 60 GHz. The LNA represents the first 90-nm CMOS implementation at 60 GHz and demonstrates improvements in noise, gain and power dissipation compared to earlier 60-GHz LNAs in 160-GHz SiGe HBT and 0.13-mum CMOS technologies. It features 14.6 dB gain, an IIP 3 of -6.8 dBm, and a noise figure lower than 5.5 dB, while drawing 16 mA from a 1.5-V supply. The use of spiral inductors for on-chip matching results in highly compact layouts, with the total PA and LNA die areas with pads measuring 0.35times0.43 mm2 and 0.35times0.40 mm2, respectively  相似文献   

3.
A Compact, ESD-Protected, SiGe BiCMOS LNA for Ultra-Wideband Applications   总被引:1,自引:0,他引:1  
Two 3.65-mW, ESD-protected, BiCMOS ultra-wideband low-noise amplifiers (LNAs) for operation up to 10 GHz are presented. These common-base LNAs achieve significant savings in die area over more widely used cascoded common-emitter LNAs because they do not use an LC input matching network. A design with a shunt peaked load achieves a high S21 (17-19 dB) and low noise figure (NF) (4-5 dB) across the band. A resistively loaded design exhibits a lower S21 (15-16 dB) and higher NF (4.5-6 dB), but also utilizes 20% less silicon area. Both LNAs achieve a 1.5 kV ESD protection level and an acceptable S11 (<-10 dB) across the band. Current source noise reduction is critical in common base topologies. Therefore, detailed noise analyses of MOS- and HBT-based current sources are provided  相似文献   

4.
An architecture used for input matching in CMOS low-noise amplifiers (LNAs) is investigated in this paper. In the proposed architecture, gate and source inductors, which are essential in the traditional source inductive degeneration CMOS LNAs, are either reduced or removed. The architecture is finally verified by a narrow-band LNA and a wide-band LNA operating at 2.4-2.5 and 5.1-5.9 GHz, respectively. The narrow-band LNA has measured power gain of 24-dB, noise figure (NF) of 2.6-2.8 dB, and power consumption of 15 mW. The wide-band LNA provides 22.6-24.6-dB power gain and 2.85-3.5-dB NF while drawing 6 mA current from a 1.5-V voltage supply. Compared with their traditional counterparts, the proposed LNAs consume less chip area and present better gain performance.  相似文献   

5.
Two 3–5-GHz low-power ultra-wideband (UWB) low-noise amplifiers (LNAs) with out-band rejection function using 0.18- $mu{hbox{m}}$ CMOS technology are presented. Due to the Federal Communications Commission's stringent power-emission limitation at the transmitter, the received signal power in the UWB system is smaller than those of the close narrowband interferers such as the IEEE 802.11 a/b/g wireless local area network, and the 1.8-GHz digital cellular service/global system for mobile communications. Therefore, we proposed a wideband input network with out-band rejection capability to suppress the out-band properties for our first UWB LNA. Moreover, a feedback structure and dual-band notch filter with low-power active inductors will further attenuate the out-band interferers without deteriorating the input matching bandwidth in the second UWB LNA. The 55/48/45 dB maximum rejections at 1.8/2.4/5.2 GHz, a power gain of 15 dB, and 3.5-dB minimum noise figure can be measured while consuming a dc power of only 5 mW.   相似文献   

6.
A 1.34 GHz60 MHz low noise amplifier (LNA) designed in a 0.35 m SiGe process is presented. The designed LNA exhibits a power gain of 21.46 dB and a noise figure (NF) of 1.27 dB at 1.34 GHz. The linearity is improved with an active biasing technique. The post-layout simulation shows an input referred 1-dB compression point (IP1dB) of ?11.52 dBm. Compared with the recent reported high gain LNAs, the proposed LNA has a much better linearity without degrading other performance. The LNA draws 10 mA current from a 3.3 V power supply.  相似文献   

7.
A 1.34 GHz-1=60 MHz low noise amplifier (LNA) designed in a 0.35 pm SiGe process is presented. The designed LNA exhibits a power gain of 21.46 dB and a noise figure (NF) of 1.27 dB at 1.34 GHz. The linearity is improved with an active biasing technique. The post-layout simulation shows an input referred 1-dB compression point (IPldn) of-11.52 dBm. Compared with the recent reported high gain LNAs, the proposed LNA has a much better linearity without degrading other performance. The LNA draws 10 mA current from a 3.3 V power supply.  相似文献   

8.
A 2.4/3.5/4.9/5.2/5.7-GHz concurrent multiband low noise amplifier using InGaP/GaAs HBT technology is demonstrated for the first time. Multiband input matching is achieved by newly developed capacitive feedback instead of traditional inductive feedback technique. The experimental results showed that input return loss of -12, -16, -14, -13, and -12 dB, voltage gain of 29, 27, 24, 23.6, and 22.5 dB and noise figure of 2.89, 2.76, 2.95, 2.98, and 3.1 dB were obtained at 2.4/3.5/4.9/5.2/5.7 GHz, respectively.  相似文献   

9.
Two fully integrated silicon bipolar LNAs at 8 and 12 GHz are presented. Both circuits provide simultaneous noise and input impedance matching. Resonant loads, designed for 50-Ω output matching, are also included. Moreover, the noise and input impedance self-matching trend of the cascode topology in the X and Ku bands was also explored and the design of integrated spiral inductors was discussed. From an on-wafer test, the 8 and the 12-GHz LNAs exhibit a power gain of 11.5 and 8 dB and a noise figure of 2.6 and 4.7 dB, respectively. This performance was achieved with bias currents as low as 4 mA for each circuit. The two LNAs were fabricated in a 46-GHz-f T pure bipolar technology.  相似文献   

10.
Design and measured results of a fully integrated 5.7-GHz CMOS low-noise amplifier (LNA) is presented. To design this LNA, the parasitic input resistance of a metal-oxide-semiconductor field-effect transistor (MOSFET) is converted to 50/spl Omega/ by a simple L-C network, hence eliminating the need for source degeneration. It is shown, by means of compact expressions, that this matching method enhances the effective transconductance of the LNA by a factor that is inversely proportional to a MOSFET's input resistance. The effect of our proposed method on the noise figure (NF) of the LNA is also discussed. With an 11.45-dB power gain and a 3.4-dB NF at 4mW of dc power, the presented LNA achieves the best overall performance when compared with the most recently published LNAs.  相似文献   

11.
Two K-Band low-noise amplifiers (LNAs) are designed and implemented in a standard 0.18 /spl mu/m CMOS technology. The 24 GHz LNA has demonstrated a 12.86 dB gain and a 5.6 dB noise figure (NF) at 23.5 GHz. The 26 GHz LNA achieves an 8.9 dB gain at the peak gain frequency of 25.7 GHz and a 6.93 dB NF at 25 GHz. The input referred third-order intercept point (IIP3) is >+2 dBm for both LNAs with a current consumption of 30 mA from a 1.8 V power supply. To our knowledge, the LNAs show the highest operation frequencies ever reported for LNAs in a standard CMOS process.  相似文献   

12.
This paper presents the design of a 2.5/3.5-GHz dual-band low-power and low-noise CMOS amplifier (LNA), which uses the capacitor cross-coupling technique and current-reuse method with four switches. The proposed LNA uses a single RF block and a broadband input stage, which is a key aspect for the easy reconfiguration of a dual-band LNA. Switching at the inter-stage and output allows for the selection of a different standard. The dual-band LNA attenuates the undesired interference of a broadband gain response circuit, which allows the linearity of the amplifier to be improved. The capacitor cross-coupled gm-boosting method improves the NF and reduces the current consumption. The proposed LNA employs a current-reused structure to decrease the total power consumption. The inter-stage and output switched resonators switch the LNA between the 2.5-GHz and 3.5-GHz bands. The proposed dual-band LNA optimises power consumption by the securing gain, noise figure and linearity. The simulated performance reveals gains of 16.7 dB and 19.6 dB, and noise figures of 3.04 dB and 2.63 dB at the two frequency bands, respectively. The linearity parameters of IIP3 are ?5.7 dBm at 2.5 GHz and ?9.7 dBm at 3.5 GHz. The proposed dual-band LNA consumes 5.6 mW from a 1.8 V power supply.  相似文献   

13.
Optimum design of input matching network of CMOS low-noise amplifiers (LNAs) for low-power applications is discussed in this paper. This is done through an investigation of the effect of four different matching methodologies on the gain of radio frequency CMOS LNAs by means of compact analytical expressions. It is demonstrated that methods that convert the MOSFET's input impedance to 50 Omega for power matching are more suitable for low-power applications than methods that create a real 50-Omega resistance at the input of the LNA, such as source inductive degeneration. As it is analytically shown, this is because the former methods enhance the gain of the LNA by a factor that is inversely proportional to MOSFET's input resistance. The impact of each matching methodology on the noise figure (NF) of the LNA is also discussed in detail and design guidelines for optimum gain-NF performance are developed using analytical models of MOSFET's noise parameters. It is demonstrated that all four methods could achieve very good NF values, provided that the size of active and passive components are chosen carefully based on the given guidelines. Measured results of two monolithic 5.7-GHz LNAs, designed and fabricated in a 0.18-mum CMOS technology, are also presented. The input matching networks of these LNAs are optimized for low-power operation based on the theory presented in this paper. It is experimentally shown that this optimization results in approximately 60% reduction in the dc power consumption and up to 300% improvement in the overall performance of the LNA when compared with some of the most recently published LNAs  相似文献   

14.
A wide-band low-noise amplifier (LNA) design is presented with -10 dB input reflection coefficient and 100-K noise temperature over the 8-20-GHz frequency range at room temperature. This LNA can be cooled down in a liquid helium cryostat to have 10-K noise temperature for the purpose of radio-astronomy application. To achieve its wide-band characteristics, a novel input matching mechanism is proposed, which combines the high-frequency inductive feedback and the low-frequency capacitive feedback. The recognition and comprehensive interpretation of this new input matching mechanism is crucial for future development of ultra-wide-band LNAs.  相似文献   

15.
This paper proposes a fully-differential folded cascode low noise amplifier (LNA) for 5.5 GHz receiver in 180 nm CMOS technology. By improving folded cascode with an additional inductance connected at the gate of CG stage to cancel parasitic capacitance and then employing capacitor cross-coupled technique as a negative feedback in the proposed LNA, the performance of the LNA can be improved significantly in terms of gain (S21) and noise figure (NF) compared with the conventional fold cascode LNA. Furthermore, the DC power consumption of the LNA is further reduced with forward body bias topology. The measurements show the proposed LNA achieves 16.5 dB power gain, a NF of 1.53 dB, good input/output matching with the S11 and S22 are less than \(-\) 15 dB. And the operating voltage is only 0.5 V with ultra-low power consumption of 0.89 mW.  相似文献   

16.
The IEEE 802.15.4 standard relaxes the requirements on the receiver front-end making subthreshold operation a viable solution. The specification is discussed and guidelines are presented for a small area ultra-low-power design. A subthreshold biased low-noise amplifier (LNA) has been designed and fabricated for the 2.4-GHz IEEE 802.15.4 standard using a standard low-cost 0.18-mum RF CMOS process. The single-stage LNA saves on chip area by using only one inductor. The measured gain is more than 20 dB with an S11 of -19 dB while using 630 muA of dc current. The measured noise figure is 5.2 dB.  相似文献   

17.
A low-noise amplifier (LNA) uses low-loss monolithic transformer feedback to neutralize the gate-drain overlap capacitance of a field-effect transistor (FET). A differential implementation in 0.18-/spl mu/m CMOS technology, designed for 5-GHz wireless local-area networks (LANs), achieves a measured power gain of 14.2 dB, noise figure (NF, 50 /spl Omega/) of 0.9 dB, and third-order input intercept point (IIP3) of +0.9 dBm at 5.75 GHz, while consuming 16 mW from a 1-V supply. The feedback design is benchmarked to a 5.75-GHz cascode LNA fabricated in the same technology that realizes 14.1-dB gain, 1.8-dB NF, and IIP3 of +4.2 dBm, while dissipating 21.6 mW at 1.8 V.  相似文献   

18.
A 2.4-GHz transconductance (gm)—boosted common gate (CG) low-noise amplifier (LNA) with a high 1-dB compression point (P1dB) is proposed. To overcome the constraint of conventional CG LNA for input-mismatching, RF filters consisting of band-stop and high-pass filter are used as a load and inter-stage matching components, respectively. Therefore, the g m can be freely increased for a high gain and low noise figure (NF) without decreasing input impedance. Moreover, the linearity is also enhanced because band-stop filter load can reduce 2nd harmonics. The fully integrated LNA implemented by 0.18-µm RF CMOS technology delivers an input P1dB of ?1 dBm, a power gain of 14.8 dB and a NF of 3.7 dB. The LNA consumes 8.2 mA at a supply voltage of 1.8 V.  相似文献   

19.
SiGe HBT低噪声放大器的设计与制造   总被引:1,自引:0,他引:1  
该文设计和制作了一款单片集成硅锗异质结双极晶体管(SiGe HBT)低噪声放大器(LNA)。由于放大器采用复合型电阻负反馈结构,所以可灵活调整不同反馈电阻,同时获得合适的偏置、良好的端口匹配和低的噪声系数。基于0.35 m Si CMOS平面工艺制定了放大器单芯片集成的工艺流程。为了进一步降低放大器的噪声系数,在制作放大器中SiGe器件时,采用钛硅合金(TiSi2)来减小晶体管基极电阻。由于没有使用占片面积大的螺旋电感,最终研制出的SiGe HBT LNA芯片面积仅为0.282 mm2。测试结果表明,在工作频带0.2-1.2 GHz内,LNA噪声系数低至2.5 dB,增益高达26.7 dB,输入输出端口反射系数分别小于-7.4 dB和-10 dB。  相似文献   

20.
Frequency-scalable SiGe bipolar RF front-end design   总被引:1,自引:0,他引:1  
The optimum collector current density, at the global minimum noise figure (NF) point for a bipolar transistor, scales linearly with frequency. The optimum source impedance, on the other hand, remains constant if the device area is scaled inversely with frequency. As a result, transforming the design from one frequency to another can be achieved by simple circuit scaling. Taking advantage of the shallow nature of the NFmin global minima, it is possible to increase the linearity of the low-noise amplifier (LNA) or decrease its power consumption, which is required for multimode designs, with little degradation in NF. These theoretical results have been applied to LNA and active mixer designs, and verified by constructing a 1.8-GHz frequency-scaled SiGe bipolar test chip. The measured LNA NF is 1.3 dB at 4.5 mA, while the double-balanced mixer achieves a single-sideband (SSB) NF of 6.1 dB for the low-linearity mode and an IIP3 and an SSB NF of +3 dBm and 6.6 dB, respectively, for the high-linearity mode  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号