首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Characteristics of carbon deposition of CH4 and C2H4 decomposition over supported Ni and Ni-Ce catalysts were studied by using a pulse reaction as well as BET, TPR, XPS and hydrogen chemisorption techniques. It is found that there is a metal-semiconductor interaction (MScI) in the Ni-Ce catalyst, and the effect of MScI on the carbon deposition of CH4 decomposition is opposite to that of C2H4. A novel model of carbon deposition of CH4 or C2H4 decomposition was proposed.  相似文献   

2.
Nano-sized yttria particles were synthesized via a non-aqueous sol-gel process based on hydrated yttrium nitrate and ethylene glycol. The effects of the molar ratio of ethylene glycol to yttrium ion and calcination temperature on crystallite size of the products were studied. The catalytic performance of the as-prepared yttria for the ammonium perchlorate (AP) decomposition was investigated by differential scanning calorimetry (DSC). The results indicate that the nano-sized cubic yttria particles with less than 20 nm in average crystallite size can be obtained after 2 h reflux at 70 ℃, dried at 90 ℃, forming xerogel, and followed by annealing of xerogel for 2 h, and that the addition of the nano-sized yttria to AP incorporates two small exothermic peaks of AP in the temperature ranges of 310 ~ 350 ℃ and 400 ~ 470 ℃ into a strong exothermic peak of AP and increases the apparent decomposition heat from 515 to over 1110 J·g-1. It is also clear that the temperature of AP decomposition exothermic peak decreases and the apparent decomposition heat of AP increases with the increase of the amount of nano-sized yttria. The fact that the addition of the 5 % nano-sized yttria to AP decreases the temperature of AP exothermic peak to 337.7 ℃ by reduction of 114.6 ℃ and increases the apparent decomposition heat from 515 to 1240 J·g-1, reveals that nano-sized yttria shows strong catalytic property for AP thermal decomposition.  相似文献   

3.
为了研究钢包顶渣中BaO和TiO2在常压和真空下对钢液氮含量的影响,选用CaO—SiO2—Al2O2碱性渣作为基础渣系,通过分析试验结果得出,在真空下渣系中的BaO和TiO2对钢液氮含量的影响作用明显强于常压条件下的作用,同时得出,无论是常压下还是真空下,向熔渣中同时添加BaO和TiO2配成的渣系对钢液脱氮作用强于单独加入。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号