首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 819 毫秒
1.
Polychlorobiphenyls (PCBs), hexachlorobenzene (HCB), hexachlorocyclohexanes, and DOTs were analyzed over 1 entire year period in the air of a high altitude remote site (2367 m above sea level) located in Teide (Tenerife, Canary Islands, 28 degrees N16 degrees W) in the Eastern North Atlantic region. Twenty samples were collected providing information on the concentrations of these semivolatile organochlorine compounds (SOCs) in the free troposphere since the stable and persistenttemperature inversion in the subtropics defines a clear separation from the marine boundary layer. More than 80% of total SOCs were in the gas phase. HCB was the individual SOC in higher concentration, 51 pg m(-3), well above than the other SOCs identified, 1-11 pg m(-3). Sum PCB concentrations were 78 pg m(-3). These concentrations range among the lowest described in atmospheric samples. The collected air originated from four main sectors, high and middle latitudes in the north Atlantic, Europe, and Africa, as determined from isentropic backward air mass trajectories. No significant differences were observed for the concentrations of these compounds between air masses showing a high uniform SOC composition of the free troposphere. Only the more volatile PCB congeners, #18 and #28, exhibited significant differences between air masses from northern and southern latitudes. A seasonal temperature dependence for the less volatile PCB congeners, five or more chlorine subtituents, was also observed. Free tropospheric concentrations of all SOCs except HCB were lower than those measured near sea level for reference. PCB concentrations at the two altitudes exhibited consistent differences according to degree of chlorination. The stronger decrease of the more volatile compounds with altitude might reflect higher photodegradation.  相似文献   

2.
Spray irrigation facilities utilizing treated municipal wastewater are a potential source of polybrominated diphenyl ethers (PBDEs) to the atmosphere. PBDEs are used as flame retardants in many household items and have been found in wastewaters and biosolids. Evidence of PBDE release from spray irrigation facilities was discovered during a multiyear project to measure semivolatile organic chemical concentrations in air. Four BDE congeners (47, 99, 100, and 154) were monitored at three remote/ rural locations in Maryland and Delaware from 2001 to 2003. Average concentrations at two of the sites (BDE-47, 10-17 pg/m3; BDE-99, 5.3-7.7 pg/m3) reflect background levels. Average concentrations at the third location were 5-10 times higher (BDE-47, 175 pg/m3; BDE-99, 26 pg/m3) and were significantly correlated (p < 0.0001) with temperature indicating local source(s). Several spray irrigation facilities are located south and west of the third site, the prevailing wind direction during the spring and summer when most samples were collected. The fine mist released from the irrigation equipment may enhance release to the atmosphere via air-water gas exchange from water droplets. Temporal trends indicate that aerial concentrations of PBDEs in this area are increasing at an exponential rate; the atmospheric doubling times for the different congeners range from 1.1 to 1.7 yrs.  相似文献   

3.
Ship-board air samples collected between The Netherlands and South Africa in January-February 2001 were analyzed for PCBs and selected organochlorine compounds. Broad latitudinal trends in compound concentrations were influenced by proximity to source areas, land, and air mass origin. Lowest concentrations were observed in the remote south Atlantic (1-32 degrees S), where sigma7PCB concentrations were approximately 10 pg m(-3). Here, a diurnal cycle was noted for some PCB congeners, with the daytime concentrations higher than the nighttime concentrations, typically by a factor of 1.5-2.5. The data are consistent with a close coupling of air-open ocean concentrations, which has important implications for future rates of POP removal from the global "recyclable pool". The observations are discussed in the context of the potential controlling variables. Interactions between the phytoplankton and the dissolved phase are implicated in controlling the observations made here and a hypothesis to explain the cycling trends is presented. However, the precise mechanisms remain unclear; further studies are urgently required to elucidate them.  相似文献   

4.
Seawater and air samples were collected aboard the FS Polarstern during the cruises ANT-XXV/1 + 2 in the Atlantic and Southern Ocean in 2008. The particulate and dissolved phase in water and particulate and gaseous phase in air were analyzed separately for nine polybrominated diphenyl ethers (PBDEs) and six non-PBDE brominated flame retardants (BFRs). Air concentrations of 2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE) and hexabromobenzene (HBB) in the gaseous and particulate phase (median = 0.56 pg m(-3) for DPTE and 0.92 pg m(-3) for HBB) were comparable to ∑(9)PBDEs (1.0 pg m(-3)). Pentabromotoluene (PBT) was detectable in ~30% of the gaseous phase samples, whereas concentration of 2,4,6-tribromophenyl allylether (ATE), hexachlorocyclopentenyl-dibromocyclooctane (HCDBCO) and 2-ethyl-1-hexyl 2,3,4,5-tetrabromobenzoate (EHTBB) were below their method detection limits. DPTE, and PBDEs were also found in seawater at low pg per liter levels. Elevated seawater concentrations of PBDEs and DPTE were measured in the English Channel and close to South African coast. Concentrations of DPTE, BDE-47, and BDE-99 in the atmosphere generally decreased from Europe toward the Southern Ocean, whereas no latitudinal trend was observed in seawater. Air-water exchange gradients suggested net deposition dominates for all selected substances. The medians of net deposition fluxes for the air-water gas exchange were 83, 21, 69, 20, and 781 pg m(-2) day(-1) for BDE-47, BDE-100, BDE-99, DPTE, and HBB, whereas medians of dry deposition fluxes were 2.0, 0.3, 1.2, 1.0, and 0.5 pg m(-2) day(-1) for BDE-47, BDE-100, BDE-99, DPTE, and HBB. Overall, these results highlight the important role of the long-range atmospheric transport of PBDE and non-PBDE BFRs to remote regions.  相似文献   

5.
Neutral perfluorinated alkyl substances (PFASs), which are thought to be volatile precursors of environmentally ubiquitous perfluorocarboxylates (PFCAs) and perfluorooctanesulfonate (PFOS), were quantified in XAD-2 resin based passive air samplers deployed along an altitudinal transect from 800 to 2740 m above sea level (asl) in Western Canada (based at N51degrees 20' W117degrees 00') over the spring and summer seasons of 2004. The amounts of fluorotelomer alcohols (FTOHs) and perfluorinated sulfonamido alcohols (FOSEs) sequestered in the samplers increased with altitude, being lowest at an elevation of 1300 m asl and highest at either the 2340 or the 2740 m asl sites. A variety of potential reasons for these gradients are discussed, including changes in sampler uptake kinetics and phase capacity caused by changes in atmospheric pressure,temperature, and wind speed. Vapor phase concentrations were estimated to range from 3.7 to 19 pg m(-3) for perfluorinated sulfonamides (FOSAs) and from below detection limits (25 pg m(-3)) to 88 pg m(-3) for FOSEs. Over a similar altitudinal range (800-2350 m asl), 9 L lake water samples were collected in stainless steel cans, extracted with solid phase extraction columns, and analyzed for PFCAs and PFOS. Aqueous concentrations in lake water, ranging from 0.07 to 1.0 ng L(-1) for single PFCAs and from 0.04 to 0.1 ng L(-1) for PFOS, were more constant with altitude and were not correlated with the amount of the precursor compounds in the atmosphere. The relative abundance of FTOHs in air and PFCAs in water supports atmospheric FTOH degradation as the source of PFCAs in the mountain lakes.  相似文献   

6.
Polychlorinated naphthalenes (PCNs) and mono- and non-ortho substituted PCBs were analyzed in air from two sites in Toronto, Ontario, Canada to determine whether current combustion-related sources contribute to the levels and profiles of PCNs found in urban air. High-volume air samples were collected periodically at the University of Toronto (UT, a downtown site) and in north Toronto at the Meteorological Service of Canada (MSC). SigmaPCN concentrations ranged from 31 to 78 pg m(-3) at UT and from 7 to 84 pg m(-3) at MSC with concentrations lower at MSC than UT for paired samples. Ambient air congener profiles contrasted between the two sites with MSC profiles indicating inputs from combustion-related sources when compared to combustion fly ash and technical PCN and PCB mixture profiles. Combustion markers, including CN-44, -29, and -54, the more toxic CN-66 and -67 congeners, and non-ortho PCBs, were enriched in air at MSC on a mass percent basis in several samples. As a result, CN-66/67 contributed proportionally more to dioxin toxic equivalents at MSC than at UT. Downtown air PCN profiles resembled those of technical PCN and PCB mixtures, reflecting evaporative emissions from past uses, while PCN levels and profiles at MSC, a more industrialized location, are also influenced by current combustion sources, contributing as much as an estimated 54% of sigmaPCN in samples collected.  相似文献   

7.
Air samples were analyzed from urban, rural, and remote sites near the Great Lakes to investigate the occurrence, concentrations, and spatial and temporal differences of polybrominated diphenyl ethers (PBDE) in air. The concentrations of PBDEs were compared to those of other organohalogen compounds such as PCBs and organochlorine pesticides. The samples were collected in 1997-1999 as part of the Integrated Atmospheric Deposition Network (IADN). To minimize the variability of the data, we selected only samples taken when the atmospheric temperature was 20 +/- 3 degrees C. PBDEs were found in all samples, indicating that these compounds are widely distributed and that they can be transported through the atmosphere to remote areas. The total concentrations of PBDEs were similar to some of the organochlorine pesticides such as sigmaDDT and ranged from 5 pg/m3 near Lake Superior to about 52 pg/m3 in Chicago. In fact, the spatial trend was well correlated to those of PCBs. Our results indicate a relatively constant level from mid-1997 to mid-1999. At 20 +/- 3 degrees C, about 80% of the tetrabromo homologues are in the gas phase and about 70% of the hexabromo homologues are associated with the particle phase. Thus, particle-to-gas partitioning in the atmosphere is an important process for these compounds.  相似文献   

8.
Tropospheric phosphine and its sources in coastal antarctica   总被引:4,自引:0,他引:4  
Earlier reports show very low concentrations of phosphine in remote air of the lower troposphere of nonpolar regions, in the low ng m(-3) range during the night and in the pg m(-3) range during daylight around noon. In this study, abnormally and unexpectedly high phosphine concentrations (30.0-407.8 ng m(-3), 11 locations) were found in polar air samples collected on Millor Peninsula, eastern Antarctica and Fildes Peninsula, western Antarctica. The maximum concentration was measured in the atmosphere of penguin colonies. Field phosphine emission rates from four colonies were 8.99 ng m(-2) h(-1) (skua colony), 9.56 ng m(-2) h(-1) (gentoo penguin colony), 39.96 ng m-2 h-' (seal colony) and 63.58 ng m(-2) h(-1) (empire penguin colony), respectively. Our air sampling sites are located downwind of two large penguin colonies, indicating that penguin colony emission is the predominant source for atmospheric PH3 on Millor Peninsula. Laboratory scale incubation of ornithogenic soils amended by penguin guanos yielded a maximum PH3 production rate of 0.58 ng kg(-1) d(-1) specifically at low temperature (4 degrees C). Significant concentrations of phosphine occur in the atmosphere of coastal Antarctica and confirm the existence of a small gaseous link in the phosphorus cycle of the Antarctic tundra ecosystem.  相似文献   

9.
This study documents the occurrence of highly chlorinated PCB congeners in stream sediment deposited over 100 years ago. Penta- to heptachlorinated congeners (> 80%) have been found at concentrations up to 78.8 ng/g (dw) in core samples of a small, rural tributary of Lake Ontario. Lower chlorinated congeners and other organochlorine compounds occur sporadically; 210Pb and 137Cs are lacking. The most plausible mechanism is accumulation of dissolved-phase PCBs in permeable sediments adjacent to the creek channel. The similarity between core and air samples collected in the drainage basin suggests derivation from a residual fraction of atmospherically derived PCB congeners.  相似文献   

10.
Air and leaf-litter samples were collected from a rural site in southern Ontario under meteorologically stable conditions in the early spring, prior to bud burst, over a three-day period to measure the simultaneous diurnal variations in polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs). PBDEs are used in a wide range of commercial products as flame retardants and are being assessed internationally as potential persistent organic pollutants. Total PBDE concentrations in the air ranged between 88 and 1250 pg m(-3), and were dominated primarily by the lighter congeners PBDEs 17, 28, and 47, and concentrations of total PCBs ranged between 96 and 950 pg m(-3), and were dominated by the lower chlorinated (tri- to tetra-) congeners. Slopes of Clausius-Clapeyron plots indicate that both PCBs and PBDEs are experiencing active air-surface exchange. Fugacities were estimated from concentrations in the air and leaf-litter and suggest near equilibrium conditions. Following the three-day intensive sampling period, 40 air samples were collected at 24-hour intervals in an attempt to evaluate the effect of bud burst on atmospheric concentrations. Total PBDE concentrations in the daily air samples ranged between 10 and 230 pg m(-3), and were dominated by the lighter congeners PBDE 17, 28, and 47, whereas concentrations of total PCBs ranged between 30 and 450 pg m(-3) during this period. It is hypothesized thatthe high PBDE concentrations observed at the beginning of the sampling period are the result of an "early spring pulse" in which PBDEs deposited in the snowpack over the winter are released with snowmelt, resulting in elevated concentrations in the surface and air. Later in the sampling period, following bud burst, PBDE concentrations in air fell to 10 to 20 pg m(-3), possibly due to the high sorption capacity of this freshly emerging foliage compartment.  相似文献   

11.
The role of phenol precursors in polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) formation in municipal waste incinerators is assessed on the basis of homologue and isomer patterns. Homologue and isomer patterns of PCDD and PCDF congeners formed from phenols both in the gas phase and via particle-mediated reactions were studied in an isothermal flow reactor. A mixture of unsubsitituted phenol and 19 chlorinated phenols in relative concentrations found in a municipal waste incinerator (MWI) stack gas was used for this study. PCDD and PCDF homologue and isomer patterns obtained from the phenol experiments were compared with those observed in MWI data. From the phenol experiments, gas-phase formation at 600-700 degrees C favors PCDF formation whereas particle-mediated formation at 400 degrees C favors PCDD formation. Unsubstituted phenol, which was present in high concentration, played a significant role in the formation of PCDD/F congeners under both sets of experimental conditions. PCDD/F distributions in MWI flue gas and fly ash samples were differentfrom those observed in the phenol experiments, suggesting that direct phenol condensation was not the primary route of PCDD/F formation at the incinerators. Gas-phase phenol condensation is a source of dibenzofuran, with subsequent particle-mediated chlorination resulting in PCDF formation. In the case of PCDD formation, phenol condensation may be responsible for the formation of certain highly chlorinated congeners. In this paper we demonstrate the use of homologue and isomer patterns for PCDD/F formation mechanism attribution in municipal waste incinerators.  相似文献   

12.
Precipitation samples collected continuously at Point Petre on Lake Ontario from November 1994 through December 1998 were analyzed for total toxaphene (=sum of hexa-, hepta-, octa-, and nonachloro bornanes) and chlorobornane congeners (1997-98 only). Composite triplicate samples were collected during 4-week intervals throughoutthe 4-year study using heated wet-only samplers. These results represent the first detailed data for toxaphene in Great Lakes precipitation. Seasonal volume-weighted mean concentrations for total toxaphene in precipitation ranged from 0.25 to 1.5 ng/L. Highest concentrations were found during the four spring (March-May) periods at roughly twice the annual means. The pattern for hexathrough nona-homologues over the 4 years did not vary appreciably with average ratios (relative to hepta-) of 0.08: 1.0:1.3:0.2. The volume-weighted mean concentrations for individual chlorobornane congeners were consistent in their season pattern with maximums seen in the spring. The major chlorobornane in precipitation, B8-2229 (Parlar 44), which was present at concentrations ranging from 0.016 to 0.079 ng/L, constituted 28 and 29% of the congener sum for 1997 and 1998, respectively. Lakewide loadings of toxaphene for Lake Ontario via precipitation were estimated to be 12, 17, 12, and 13 kg/year for 1995-1998, respectively. Previous toxaphene loading estimates were calculated for the individual Great Lakes on the basis of the only concentration data available, a single precipitation estimate of 0.2 ng/L from early work in northwestern Ontario. The loading estimates in this study indicate that precipitation inputs of toxaphene are 3-4 times higher than previously reported for Lake Ontario. The 1998 estimates of Lake Ontario wet deposition flux are 50% of the estimated gas deposition flux. However, wet flux values from this study exceed the net gas-phase mass transfer of toxaphene across the air-water interface.  相似文献   

13.
Polychlorinated biphenyl (PCB) concentrations were measured in a concurrent air and surface soil sampling program across China. Passive air samples were collected for approximately 3 months from mid-July to mid-October, 2005 using polyurethane foam (PUF) disk type samplers at 97 sites and surface soil samples were collected in a subset of 51 sites in the same year. As expected, the air concentrations (pg m(-3)) were highest at urban sites (mean of 350 +/- 218) followed by rural (230 +/- 180) and background sites (77 +/- 50). The PCB homologue composition was similar across China, with no distinction among site types, and reflected the profile of Chinese transformer oil with a greater proportion of lower molecular weight (LMW) congeners, particularly the tri-PCBs. This differs from the profile in Chinese soil that was shifted toward the higher molecular weight (HMW) congeners and likely attributed to numerous years of deposition and accumulation in this reservoir. The PCB profile in surface soil also reflects an "urban fractionation effect" with preferential deposition of HMW congeners near sources. The profile of PCBs in Chinese air was shown to be different than reported for Europe and for the Great Lakes Area (GLA) in North America. European and GLA air samples show a distinction between urban and rural/V background sites, with urban sites dominated by tetra- and penta-PCBs, whereas rural and background sites are shifted toward LMW congeners. European and GLA samples also exhibit much higher PCB concentrations at urban sites. This may be attributed to the use of PCBs in building materials in European and North American cities. In China, the difference between urban and rural/background sites is less pronounced. Strong soil-air correlations were found for the LMW PCBs at the background and rural sites, and for the HMW PCBs at the urban sites, a strong evidence of the urban fractionation effect. To our knowledge, this is the first national-scale study in China investigating PCBs in both air and surface soil samples.  相似文献   

14.
Hexachlorocyclohexanes (HCHs) were determined simultaneously in air and seawater during two cruises across the Atlantic Ocean between the Arctic Ocean (Ny-Alesund/ Svalbard, 79 degrees N; 12 degrees E) and the Antarctic Continent (Neumayer Station/ Ekstroem Ice Shelf, 70 degrees S; 8.2 degrees W) in 1999/ 2000. The concentrations of alpha-HCH and gamma-HCH in air and surface waters of the Arctic exceeded those in Antarctica by 1-2 orders of magnitude. The gaseous concentrations of gamma-HCH were highest above the North Sea and between 20 degrees N and 30 degrees S. Fugacity fractions were used to estimate the direction of the air-sea gas exchange. These showed for alpha-HCH thatthe measured concentrations in both phases were close to equilibrium in the North Atlantic (78 degrees N-40 degrees N), slightly undersaturated between 30 degrees N and 10 degrees S and again close to equilibrium between 20 degrees S and 50 degrees S. Y-HCH has reached phase equilibrium in the North Atlantic as alpha-HCH, but the surface waters of the tropical and southern Atlantic were strongly undersaturated with y-HCH, especially between 30 degrees N and 20 degrees S. These findings are significantly different from two earlier estimates around 1990 as a result of global emission changes within the past decade. Therefore, we investigated the time trend of the HCHs in the surface waters of the Atlantic between 50 degrees N and 60 degrees S on the basis of archived samples taken in 1987-1997 and those from 1999. A decrease of alpha-HCH by a factor of approximately 4 is observed at all sampling locations. No decrease of gamma-HCH occurred between 30 degrees N and 30 degrees S, but there was a decrease in the North Atlantic, North Sea, and in the South Atlantic south of 40 degrees S. The constant level of gamma-HCH in the tropical Atlantic confirms the conclusion that the tropical Atlantic acts as a sink for y-HCH at present time. The measured alpha-HCH seawater concentrations were compared with results from a global multimedia fate and transport model. Whereas the time trend over 13 years and the latitudinal gradient were well reproduced by the model, the absolute levels were too high by a factor of 4.5. This may be explained by the zonal averaging employed in the model as well as uncertain emissions and degradation rates.  相似文献   

15.
In July to September 2003, particulates in the oceanic atmosphere from the Bohai Sea to the high Arctic (37 degrees N to 80 degrees N) were collected aboard a research expedition icebreaker, Xuelong (Snow Dragon), under the 2003 Chinese Arctic Research Expedition Program (CHINARE 2003). These samples were analyzed to elucidate the atmospheric distributions of polybrominated diphenyl ethers (PBDEs) in the North Pacific Ocean and adjacent Arctic region. The levels of 11 PBDE congeners (BDE-28, -47, -66, -100, -99, -85, -154, -153, -138, -183, and -209; the sum was defined as sigma11PBDE) in the oceanic atmosphere of Far East Asia (34-48 degrees N/122-148 degrees E) ranged from 2.25 to 198.9 pg/m3 with a mean of 58.3 pg/m3. BDE-47, -99, -100, and -209 were the dominant congeners in all the samples, suggesting that the widely used commercial penta- and deca-BDE products were the original sources. The PBDE levels exhibited a decreasing trend from the mid- to high-latitudinal regions of the North Pacific Ocean, probably resulting from dilution, deposition, and decomposition of PBDEs during long-range transport of air masses. On the other hand, no apparent geographical pattern of PBDE distribution was observed within the Arctic, attributable to unstable air circulation and strong air mixing. Correlations among the PBDE congeners suggested that air masses collected from the North Pacific Ocean were relatively fresh, whereas those from the Arctic were aged as a result of photodecompoisiton. The higher average level (17.3 pg/m3) of PBDE congeners in the Arctic than those in the adjacent North Pacific Ocean (12.8 pg/m3) or other remote areas reported in the literature was attributed to the impact of the North American continent and temperature effects, which was consistent with the hypotheses of global fractionation.  相似文献   

16.
Perfluorinated chemicals in the arctic atmosphere   总被引:3,自引:0,他引:3  
Twenty high-volume air samples were collected during a crossing of the North Atlantic and Canadian Archipelago in July 2005 to investigate air concentrations of fluorotelomer alcohols (FTOHs) and perfluoalkyl sulfonamido ethanols (PFASs). These commercial chemicals are widely used as surface treatments and are believed to be precursors for perfluorocarboxylic acids (PFCAs) and perfluorooctane sulfonate (PFOS) that accumulate in humans and biota, including those from remote arctic regions. The highest concentrations (sum of gas- and particle-phase) of FTOHs were for 8:2 FTOH (perfluoroctyl ethanol) (5.8-26 pg/m(3)), followed by 10:2 FTOH (perfluorodecyl ethanol) (1.9-17 pg/ m(3)) and 6:2 FTOH (perfluorohexyl ethanol) [BDL (below detection limit) to 6.0 pg/m(3)]. For the PFASs, MeFOSE (N-methyl perfluorooctane sulfonamido ethanol) was dominant and ranged from 2.6 to 31 pg/m(3); EtFOSE (N-ethyl perfluorooctane sulfonamido ethanol) ranged from BDL to 8.9 pg/m(3) and MeFOSEA (N-methyl perfluorooctane sulfonamide ethylacrylate) was BDL in all samples. Air parcel back-trajectories showed that the sampled air was largely representative of the arctic air mass. Air concentrations of target compounds were of the same order of magnitude as reported air concentrations in source regions. For instance, the mean 8:2 FTOH concentration was only a factor of about 3 lower than for three urban samples that were collected in Toronto for comparison. These findings confirm model results that predictthe efficient, long-range atmospheric transport and widespread distribution of FTOHs and related compounds in the arctic region. Mean particulate percentages for FTOHs and PFASs in the cruise samples (mean temperature, 5+/-4 degrees C) were BDL for 6:2 FTOH, 23% for 8:2 FTOH, 15% for 10:2 FTOH, 32% for MeFOSE, and 22% for EtFOSE. Further, the partitioning to particles for MeFOSE and EtFOSE was significantly correlated with inverse absolute temperature, whereas the FTOHs did not show this trend. The Toronto samples (mean temperature, -1+/-1 degree C) showed similar particulate percentages for MeFOSE and EtFOSE; however, the FTOHs were substantially less particle-bound. Although the mechanism for this partitioning is not understood, the results do indicate the need to better account for particle phase transport when modeling the atmospheric fate of these chemicals.  相似文献   

17.
Sediment cores were taken in 2002 in Lakes Michigan and Huron at six locations. A total of 75 samples were characterized, dated using 210Pb, and analyzed for 10 congeners of polybromodiphenyl ether (PBDE) including BDE209, as well as 39 congeners of polychlorinated biphenyls (PCBs). The concentrations of nine tri- through hepta-BDE congeners (Sigma9PBDE) in the surficial sediments range from 1.7 to 4 ng g(-1) for Lake Michigan and from 1.0 to 1.9 ng g(-1) for Lake Huron, on the basis of the dry sediment weight. The Sigma9PBDEs fluxes to the sediment around the year 2002 are from 36 to 109 pg cm(-2) yr(-1) in Lake Michigan and from 30 to 73 pg cm(-2) yr(-1) in Lake Huron, with spatial variations in both lakes. The flux of BDE209 ranges from 0.64 to 2.04 ng cm(-2) yr(-1) and from 0.67 to 1.41 ng cm(-2) yr(-1) in Lake Michigan and Lake Huron, respectively. Dramatic increases in PBDE concentrations and fluxes upward toward the sediment surface and the present time are evident at all locations. The inventory of PBDEs in both lakes appears to be dependent upon latitude and the proximity to populated areas, implying that north-bound air plumes from urban areas are the major sources of PBDEs found in the lake sediments at locations away from the shores. Heavier congeners are more abundant in the sediments than in air and fish samples in the region. BDE209 is about 96% and 91% of the total PBDEs on a mass basis in Lake Michigan and Lake Huron, respectively; both are higher than the 89% found in Lake Superior, although a t test shows that the value for Lake Huron is not statistically different from that for Lake Superior at the 95% confidence level.  相似文献   

18.
Surface seawater concentrations of PCBs, relative congener abundance, and possible effects of cold condensation were studied along a transect from the southern Norwegian Sea to the central Arctic Ocean (62 degrees N-89 degrees N). Large volume samples were collected from an ice breaker using a stainless steel surface seawater intake connected online to an ultra-clean laboratory. Concentrations of all studied PCB congeners, except for trichlorinated PCB 18, decreased with latitude. For instance, PCB 52 decreased from 470 fg L(-1) at 62 degrees N to 110 fg L(-1) at 89 degrees N and PCB 180 from 110 to 12 fg L(-1). Concentrations in the central Arctic Ocean were on the order of 10-100 fg L(-1) for the most abundant congeners. The relative contribution oftrichlorinated PCBs to the total PCB concentration increased with latitude, the tetrachlorinated contribution to the total PCBs did not show any correlation to latitude, and the relative contribution of heavier congeners decreased with latitude. This study establishes the occurrence at very low abundances of PCBs in seawater in the central Arctic Ocean and demonstrates a northward concentration decrease. The latitudinal shift in congener pattern is reflecting the relative propensity of the PCB congeners to undergo long-range transport in the Arctic and is consistent with their relative vapor pressures.  相似文献   

19.
Photochemical degradation of PCBs in snow   总被引:1,自引:0,他引:1  
This work represents the first laboratory study known to the authors describing photochemical behavior of persistent organic pollutants in snow at environmentally relevant concentrations. The snow samples were prepared by shock freezing of the corresponding aqueous solutions in liquid nitrogen and were UV-irradiated in a photochemical cold chamber reactor at -25 degrees C, in which simultaneous monitoring of snow-air exchange processeswas also possible. The main photodegradation pathway of two model snow contaminants, PCB-7 and PCB-153 (c approximately 100 ng kg(-1)), was found to be reductive dehalogenation. Possible involvement of the water molecules of snow in this reaction has been excluded by performing the photolyses in D2O snow. Instead, trace amounts of volatile organic compounds have been proposed to be the major source of hydrogen atom in the reduction, and this hypothesis was confirmed by the experiments with deuterated organic cocontaminants, such as d6-ethanol or d8-tetrahydrofuran. It is argued that bimolecular photoreduction of PCBs was more efficient or feasible than any other phototransformations under the experimental conditions used, including the coupling reactions. The photodegradation of PCBs, however, competed with a desorption process responsible for the pollutant loss from the snow samples, especially in case of lower molecular-mass congeners. Organic compounds, apparently largely located or photoproduced on the surface of snow crystals, had a predisposition to be released to the air but, at the same time, to react with other species in the gas phase. It is concluded that physicochemical properties of the contaminants and trace co-contaminants, their location and local concentrations in the matrix, and the wavelength and intensity of radiation are the most important factors in the evaluation of organic contaminants' lifetime in snow. Based on the results, it has been estimated that the average lifetime of PCBs in surface snow, connected exclusively to the photoreductive dechlorination process, is 1-2 orders of magnitude longer than that in surface waters when subjected to the equivalent solar radiation. However, in case that the concentration of the hydrogen peroxide in natural snow is sufficient, the photoinduced oxidation process could succeed the photoreductive dechlorination and evaporative fluxes as the major sink.  相似文献   

20.
Photocatalytic oxidation of gaseous 2-chloroethyl ethyl sulfide (2-CEES, ClCH2CH2SCH2CH3) over TiO2 illuminated with UV light and maintained at 25 or 80 degrees C in air has been investigated. 2-CEES was found to suffer progressive oxidation to yield ethylene (CH2CH2), chloroethylene (ClCHCH2), ethanol (CH3CH2OH), acetaldehyde (CH3C(O)H), chloroacetaldehyde (ClCH2C(O)H), diethyl disulfide (CH3CH2S2CH2CH3), 2-chloroethyl ethyl disulfide (ClCH2CH2S2CH2CH3), and bis(2-chloroethyl) disulfide (ClCH2CH2S2CH2CH2Cl) as the main primary intermediates, and water (H2O), carbon dioxide (CO2), sulfur dioxide (SO2), surface sulfate ions (SO4(2-)), and hydrogen chloride (HCl) as the final products. Trace concentrations of gaseous 2-chloroethanol (ClCH2CH2OH), ethanesulfonyl chloride (CH3CH2SO2Cl), ethyl thioacetate (CH3CH2SC(O)CH3), and considerable amounts of acetic acid (CH3C(O)OH), crotonaldehyde (CH3CHCHC(O)H), methyl acetate (CH3C(O)OCH3), and methyl formate (CH3OC(O)H) were also detected in the gas phase during the photooxidation conducted at 80 degrees C. Increase in temperature from 25 to 80 degrees C accelerates formation of gaseous ethanol, acetaldehyde, chloroacetaldehyde, diethyl disulfide, 2-chloroethyl ethyl disulfide, and bis(2-chloroethyl) disulfide but suppresses ethylene and chloroethylene production at initial stages of the process. Some aspects of the possible reaction mechanism leading to this wide array of intermediates and final products are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号