首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In glial C6 cells constitutively expressing wild-type p53, synthesis of the calcium-binding protein S100B is associated with cell density-dependent inhibition of growth and apoptosis in response to UV irradiation. A functional interaction between S100B and p53 was first demonstrated in p53-negative mouse embryo fibroblasts (MEF cells) by sequential transfection with the S100B and the temperature-sensitive p53Val135 genes. We show that in MEF cells expressing a low level of p53Val135, S100B cooperates with p53Val135 in triggering calcium-dependent cell growth arrest and cell death in response to UV irradiation at the nonpermissive temperature (37.5 degreesC). Calcium-dependent growth arrest of MEF cells expressing S100B correlates with specific nuclear accumulation of the wild-type p53Val135 conformational species. S100B modulation of wild-type p53Val135 nuclear translocation and functions was confirmed with the rat embryo fibroblast (REF) cell line clone 6, which is transformed by oncogenic Ha-ras and overexpression of p53Val135. Ectopic expression of S100B in clone 6 cells restores contact inhibition of growth at 37.5 degreesC, which also correlates with nuclear accumulation of the wild-type p53Val135 conformational species. Moreover, a calcium ionophore mediates a reversible G1 arrest in S100B-expressing REF (S100B-REF) cells at 37.5 degreesC that is phenotypically indistinguishable from p53-mediated G1 arrest at the permissive temperature (32 degreesC). S100B-REF cells proceeding from G1 underwent apoptosis in response to UV irradiation. Our data support a model in which calcium signaling and S100B cooperate with the p53 pathways of cell growth inhibition and apoptosis.  相似文献   

2.
It is now generally accepted that massive neuronal death due to oxidative stress is a regular feature of brains in neurodegenerative diseases. However, much less attention has been given to the death of glial cells. In this study, we examined p53-sensitive apoptosis of cells by using human glioblastoma A172 cells and p53-deficient mouse astrocytes. In human A172 cells, hydrogen peroxide (H2O2) caused cell death in a time- and concentration-dependent manner, accompanied by nucleosomal DNA fragmentation and chromatin condensation. After treatment with H2O2, p53 protein was highly expressed and protein levels of Bak, p21WAF1/CIP1 and GADD45 were also enhanced. However, the protein levels of Bcl-2 and Bax did not change. On the other hand, primary cultured astrocytes from p53-deficient mouse brain grew faster than wild-type and heterozygous astrocytes. In addition, p53-deficient astrocytes were more resistant to H2O2-induced apoptosis than wild-type and heterozygous astrocytes. These results suggest that glial proliferation and the repair of damaged DNA may be regulated by p53-induced p21WAF1/CIP1 and GADD45, and that glial apoptosis caused by oxidative stress may be mediated by p53-induced Bak.  相似文献   

3.
4.
To investigate autoimmunity to glutamic acid decarboxylase (GAD) 65 in Japanese patients with insulin-dependent diabetes mellitus (IDDM, type I diabetes), we established seven CD4+ T-cell clones, by stimulating peripheral blood mononuclear cells (PBMC) of six IDDM patients, using a mixture of overlapping human GAD65 peptides. No GAD65 autoreactive T-cell clones were evidenced in four healthy controls. Specificities of T-cell clones were as follows: (a) two clones specific to GAD65 p111-131 (residue 111 to 131) + DR53 (DRB4*0103); (b) one clone specific to GAD65 p413-433 + DR1 (DRB1*0101); (c) two clones specific to GAD65 p200-217 + either DR9 (DRB1*0901) or DR8 (DRB1*0802); and (d) two clones specific to GAD65 p368-388 + DP2 (DPA1*01 or 0201-DPB1*0201). Two DR53-restricted and one DR1-restricted T-cell clones, responded to a recombinant human GAD65 protein, and showed cytotoxicity against B lymphoblastoid cell lines pre-pulsed with the peptides. Six T-cell clones exhibited the Th1-like phenotype. Interestingly, two DR53-restricted T-cell clones killed a Fas-deficient B lymphoblastoid cell line, thereby indicating that cytotoxicity was not completely dependent on a Fas-Fas ligand interaction. Thus, the T-cell epitopes were mapped in a limited portion of GAD65 protein, with a tendency to be restricted by disease-associated HLA-DR, but not DQ molecules.  相似文献   

5.
We have used differential hybridization to isolate and characterize two novel cDNAs expressed in chondrocytes and some osteoblastic cells. A rat osteosarcoma ROS17/2.8 cDNA library was screened and cDNA clones hybridizing strongly to radiolabeled porcine calvaria cDNA but weakly to a control radiolabeled cDNA were isolated. Two clones were obtained--p.6.1 and p.10.15. A radiolabeled probe of p10.15 was shown to hybridize specifically to a 2.3 Kb message RNA from a chondrogenic clonal cell population from rat calvaria-RCJ 3.1C5.18, and the mRNA was downregulated by 1,25 (OH)2D3, which inhibits chondrogenesis in these cells. The other clone, p6.1, was found to hybridize to a 0.95 Kb message that is expressed in rat liver, kidney, lung, muscle, and brain, but not expressed in spleen and expressed only in low levels in thymus.  相似文献   

6.
By stimulating peripheral blood mononuclear cells of four healthy donors with a mixture of overlapping peptides representing the core domain of p53, we established two CD4+ alphabeta T cell clones and four lines that recognized wild-type and mutant p53 proteins as well as p53 self peptides in an HLA class II-restricted fashion. Two T cell lines established from two unrelated donors reacted to the p53 peptide (p)153-166 and p108-122, respectively, in the context of DP5 molecules. Two T cell clones established from two other unrelated donors were specific for p193-204 in the context of DRB1*1401 and for p153-165 in the context of DP5, respectively. These two T cell clones responded almost equally to both wild-type and four mutant recombinant p53 proteins. The proliferative responses of these T cell clones to p53 recombinant proteins were augmented by heat denaturing, thereby suggesting that altered conformation of the protein facilitates proteolytic processing to produce antigenic peptides. The DRB1*1401-restricted T cell clone specific for p193-204 killed a B lymphoblastoid cell line homozygous for HLA-DRB1*1401 when the cell line was pre-pulsed with p53 protein as well as peptide. These results indicate that CD4+ T cells reactive to p53 do exist in healthy individuals and the epitopes are probably ignored by the immune system under physiological conditions. It is suggested that such epitopes stimulate T cells to induce anti-p53 antibody production in cancer patients as previously reported by others. The possible involvement of p53-reactive T cells in anti-tumor immunity is discussed.  相似文献   

7.
Wild-type P16/CDKN2 (p16INK4A, MTS1) cDNA, directed by the cytomegalovirus (CMV) immediate early promoter, was transfected into RT4 and RT112 bladder-carcinoma cell lines bearing a mutated endogenous P16/CDKN2 gene and lacking endogenous P16/CDKN2 respectively. In both cases, only transfected clones with rearranged exogenous P16/CDKN2 cDNA could be grown and propagated in cell culture. This result is reminiscent of transfection of wild-type p53 into cells with a deleted or mutated endogenous gene and suggests that P16/CDKN2, over-expressed under control of the strong CMV promoter, induces growth arrest in RT4 and RT112 cells. Transfer of human chromosome 9 to RT4 cells produced RT4/H9 hybrid clones retaining the P16/CDKN2 gene, since in RT4/H9 cell clones P16/CDKN2-gene expression is modulated by the physiological control of chromosomal regulatory sequence. All the RT4/H9 clones lost the entire chromosome 9, except clone 4 and clone 5, which maintained a deleted and an intact chromosome 9 respectively. Loss of several loci in 9p21, including P16/CDKN2, in tumors induced in nude mice by clone 4 and clone 5 suggests that P16/CDKN2 or other genes in 9p21 suppress tumorigenicity in bladder-carcinoma cells. Tumors induced by clone 4 and clone 5 show loss of markers in 9q. The regions 9q22.3, 9q32-33 and 9q34.2, which were maintained in the 2 clones and lost in their derived tumors, may contain tumor-suppressor genes relevant in bladder carcinoma. The results of this study suggest that the P16/CDKN2 gene controls growth of bladder-carcinoma cells when it is over-expressed, and may be involved in the development of bladder carcinoma, but other genes in 9p21 and 9q may participate in bladder-cancer progression.  相似文献   

8.
9.
The WAF1/p21 gene product is an inhibitor of cyclin-dependent kinases which can be induced by the tumor suppressor p53 and mediate some of its effects, or function in p53-independent pathways of cell cycle regulation. Although a potential tumor suppressor gene, WAF1/p21 is expressed in bladder cancer. To elucidate the function of p21 in tumor cells we have investigated in urothelial carcinoma cell lines: i) WAF1/p21 mRNA and protein expression, ii) the biological effects of p21 overexpression or down-regulation and (iii) whether p21 can be induced by p53. WAF1/p21 mRNA levels examined in four cell lines were comparable to bladder mucosa. One cell line, HT1376, failed to express p21 protein due to a frame shift mutation. Overexpression of WAF1/p21 cDNA inhibited clone formation in three cell lines, whereas transfection with antisense WAF1 increased clone sizes and numbers. WAF1 sense clones showed diminished cell proliferation compared to the parental cell line. Apoptosis- induced wild-type p53 was not inhibited by overexpression of antisense WAF1/p21. In a cell clone derived from line VMCub1 by stable transfection with wild-type p53 under the control of a metallothionein promotor, p21 was induced along with p53 upon activation of the promoter with zinc chloride. This induction was accompanied by a decrease in cell proliferation but by little apoptosis. These data suggest that p21 inhibits proliferation in a p53-dependent or independent manner but does not mediate p53-induced apoptosis in urothelial carcinoma cells.  相似文献   

10.
The induction of protective immunity to Leishmania amazonensis was investigated by injection of parasite clones of low and medium virulence into susceptible mice. To this end, L. amazonensis were cloned by limiting dilution and the clones' virulence was evaluated by the course of infection in susceptible mice. Clones originally derived from the spleen showed virulence variations in comparison with that of the parental population (PP) of parasites. Two low-virulence clones (SP 5 and SP 20) and one medium-virulence clone (SP 11), representative of the spectrum of derived clones, were compared with virulent parasites and with an avirulent strain (Josefa) as to their ability to induce T-cell immune responses and to protect BALB/c mice from infection with the virulent L. amazonensis PP. Clone SP 20 and clone SP 11 induced partial protection when injected by the intravenous and intradermal route, respectively. The avirulent Josefa strain induced neither T-cell responses nor protection. Low-virulence L. amazonensis clones can therefore be additional tools in vaccine investigation.  相似文献   

11.
12.
Amplification of genes involved in signal transduction and cell cycle control occurs in a significant fraction of human cancers. Loss of p53 function has been proposed to enable cells with gene amplification to arise spontaneously during growth in vitro. However, this conclusion derives from studies employing the UMP synthesis inhibitor N-phosphonacetyl-L-aspartate (PALA), which, in addition to selecting for cells containing extra copies of the CAD locus, enables p53-deficient cells to enter S phase and acquire the DNA breaks that initiate the amplification process. Thus, it has not been possible to determine if gene amplification occurs spontaneously or results from the inductive effects of the selective agent. The studies reported here assess whether p53 deficiency leads to spontaneous genetic instability by comparing cell cycle responses and amplification frequencies of the human fibrosarcoma cell line HT1080 when treated with PALA or with methotrexate, an antifolate that, under the conditions used, should not generate DNA breaks. p53-deficient HT1080 cells generated PALA-resistant variants containing amplified CAD genes at a frequency of >10(-5). By contrast, methotrexate selection did not result in resistant cells at a detectable frequency (<10(-9)). However, growth of HT1080 cells under conditions that induced DNA breakage prior to selection generated methotrexate-resistant clones containing amplified dihydrofolate reductase sequences at a high frequency. These data demonstrate that, under standard growth conditions, p53 loss is not sufficient to enable cells to produce the DNA breaks that initiate amplification. We propose that p53-deficient cells must proceed through S phase under conditions that induce DNA breakage for genetic instability to occur.  相似文献   

13.
Despite good evidence for p53 dysfunction in human hepatocellular carcinomas, little is known of the significance of p53 to normal hepatocytes and whether p53 dysfunction is relevant to early hepatocarcinogenesis. We have therefore examined the consequences of targeted p53 deficiency in hepatocytes for regulation of apoptosis, proliferation, and ploidy. p53 deficiency was silent in normal liver and did not affect progression from diploidy to polyploidy in the aging liver. However, in primary culture the absence of p53 resulted in increased hepatocyte proliferation indices and decreased sensitivity to proliferation inhibition by TGFbeta. Moreover, p53-deficient cells continued to survive and proliferate under conditions of minimal trophic support that led to growth arrest and apoptosis of wild-type cells. In vivo, p53-deficient mice had enhanced proliferative responses to both xenobiotic hepatomitogen and CCl4-induced liver necrosis, although lack of persistent proliferation showed that other control mechanisms are important. There was no simple relationship between p53 and apoptosis after DNA damage because UV irradiation led to p53-independent apoptosis, even though p53 was stabilized. However, p53 did couple DNA damage to growth arrest, and abnormal mitoses after gamma-irradiation of regenerating p53 null livers demonstrated circumstances where loss of G1 and G2 checkpoints may generate abnormal ploidy. Thus p53 becomes important when hepatocytes are released from G0 and stressed, sensitizing them to mitogen and cytokine regulators of cell cycle progression and apoptosis. Hence p53 deficiency is likely to be significant in an environment of persistent regenerative stimuli and unfavorable trophic support or in the presence of other enabling genetic lesions. This model is relevant to human hepatocarcinogenesis, which almost always occurs against a background of chronic hepatocellular destruction in hepatitis and cirrhosis. In that context, by reducing the need for cytokine support and disabling DNA damage-induced growth arrest, p53 deficiency should facilitate the expansion of preneoplastic clones in chronic liver disease.  相似文献   

14.
OBJECTIVE: To study the effects on biologic behavior in cells obtained from human ovarian cancer cell line SKOV-3 into which the wild-type p53 cDNA was introduced. METHOD: Recombinant eukaryotic expression vector pC53-SN3 containing full-length human wild-type p53 cDNA and vector containing neomycin resistance gene only were introduced by lipofectamine-mediated gene transfection into SKOV-3 cell line which does not express endogenous p53. The clones obtained were observed for their biologic behavior. RESULTS: (1) 2 clones named pC53 and 2 clones named pNeo were obtained after pC53-SN3 and vector transfection respectively; (2) The morphology of cells either from pC53 or from pNeo did not change significantly with respect to their parental SKOV-3; (3) The growth rate of cells from pC53 was much slower than that from SKOV-3, while the cell growth curve of pNeo was similar to that of SKOV-3; (4) The number of colones formed in the soft-agar by pC53 was significantly less than that by SKOV-3 or by pNeo; (5) The percentage of phase G1/G0 of pC53 was much higher than that of SKOV-3 and pNeo. CONCLUSION: Wild-type p53 cDNA may be considered as one of the target genes for the gene therapy of ovarian cancer.  相似文献   

15.
16.
17.
OBJECTIVES: To determine if induction of heat shock protein 70 (HSP 70), a stress protein that plays a cytoprotective role and inhibits cell death in response to various stimuli, will protect thymocytes and T-cell clones from radiation-induced apoptosis, and to define the mechanism of such protection. DESIGN: Thymocytes from BALB/c mice or T-lymphocyte clones were incubated at 43 degrees C for 1 hour to induce HSP 70, then irradiated. Control cells were irradiated but not heated. Fragmentation of DNA was quantitated, and p53, bax, and bcl-2 expression was analyzed at various times by the Western blot method. RESULTS: Only heated cells expressed HSP 70. The induction of HSP 70 increased basal apoptosis but significantly decreased radiation-induced apoptosis. Furthermore, introduction of an HSP 70 antisense oligomer prior to heating reversed the protective effect of HSP 70. Induction of HSP 70 in T-cell clones with sodium arsenite had a similar protective effect against radiation-induced apoptosis. Irradiation induced p53 and markedly up-regulated bax. The expression of p53 peaked at 4 hours and preceded maximal bax induction. Induction of HSP 70 prior to irradiation suppressed p53 and significantly decreased bax levels. Levels of bcl-2 were unaffected. CONCLUSIONS: Our data show that HSP 70 induction protects thymocytes from radiation-induced apoptosis by down-regulating p53 and bax expression. The induction of HSP 70 may represent a novel mechanism by which the immunosuppressive effects and the associated infectious complications of radiation therapy can be minimized.  相似文献   

18.
In many cell types, the p53 tumor suppressor protein is required for the induction of apoptosis by DNA-damaging chemotherapy or radiation. Therefore, identification of the molecular determinants of p53-dependent cell death may aid in the design of effective therapies of p53-deficient cancers. We investigated whether p53-dependent apoptosis requires activation of CPP32beta (caspase 3), a cysteine protease that has been found to mediate apoptosis in response to ligation of the Fas molecule or to granzyme B, a component of CTL lytic granules. Irradiation-induced apoptosis was associated with p53-dependent activation of CPP32beta-related proteolysis, and normal thymocytes were protected from irradiation by Acetyl-Asp-Glu-Val-Asp-CHO (Ac-DEVD-CHO), a specific inhibitor of CPP32beta. We next examined whether the Fas system is required for p53-dependent apoptosis and whether stimuli that induce activation of CPP32beta induce apoptosis in p53-deficient cells. Thymocytes or activated T cells from Fas-deficient mice were resistant to apoptosis induced by ligation of Fas or CD3, respectively, but remained normally susceptible to irradiation. Thymocytes from p53-deficient mice, although resistant to DNA damage, remained sensitive to CPP32beta-mediated apoptosis induced by ligation of Fas or CD3, or by exposure to cytotoxic T cells. These results demonstrate that DNA damage-induced apoptosis of T cells requires p53-mediated activation of CPP32beta by a mechanism independent of Fas/FasL interactions and suggest that immunological or molecular methods of activating CPP32beta may be effective at inducing apoptosis in p53-deficient cancers that are resistant to conventional chemotherapy or irradiation.  相似文献   

19.
Blastic transformation of chronic myelogenous leukemia (CML) is characterized by the presence of nonrandom, secondary genetic abnormalities in the majority of Philadelphia1 clones, and loss of p53 tumor suppressor gene function is a consistent finding in 25-30% of CML blast crisis patients. To test whether the functional loss of p53 plays a direct role in the transition of chronic phase to blast crisis, bone marrow cells from p53+/+ or p53-/- mice were infected with a retrovirus carrying either the wild-type BCR/ABL or the inactive kinase-deficient mutant, and were assessed for colony-forming ability. Infection of p53-/- marrow cells with wild-type BCR/ABL, but not with the kinase-deficient mutant, enhanced formation of hematopoietic colonies and induced growth factor independence at high frequency, as compared with p53+/+ marrow cells. These effects were suppressed when p53-/- marrow cells were coinfected with BCR/ ABL and wild-type p53. p53-deficient BCR/ABL-infected marrow cells had a proliferative advantage, as reflected by an increase in the fraction of S+G2 phase cells and a decrease in the number of apoptotic cells. Immunophenotyping and morphological analysis revealed that BCR/ABL-positive p53-/- cells were much less differentiated than their BCR/ABL-positive p53+/+ counterparts. Injection of immunodeficient mice with BCR/ABL-positive p53-/- cells produced a transplantable, highly aggressive, poorly differentiated acute myelogenous leukemia. In marked contrast, the disease process in mice injected with BCR/ABL-positive p53+/+ marrow cells was characterized by cell infiltrates with a more differentiated phenotype and was significantly retarded, as indicated by a much longer survival of leukemic mice. Together, these findings directly demonstrate that loss of p53 function plays an important role in blast transformation in CML.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号