首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
通过净浆强度和化学结合水含量的测定研究了煤矸石的活化方式以及水泥C3S含量对水泥-煤矸石复合体系水化进程的影响。并通过对体系中Ca(OH)2含量定量测试分析了影响机理。试验结果表明,同龄期复合体系浆体的净浆强度以C3S含量较高的水泥+复合活化煤矸石体系最佳,同时其化学结合水含量最高;Ca(OH)2含量测试结果表明活化后煤矸石对复合体系中的Ca(OH)2有着显著的吸收效果,同时水泥中较高含量的C3S能更好的促进煤矸石与Ca(OH)2的二次反应。  相似文献   

2.
《混凝土》2016,(3)
通过回顾我国水泥质量的发展道路,试图探寻水泥质量变迁与混凝土耐久性劣化的关系。从混凝土耐久性破坏的本质,追溯分析已经提出的水泥早期强度高和细度细等影响耐久性的因素,提出水泥早期水化速率过快,和水泥碱含量高是导致混凝土耐久性劣化的两个本质因素。水泥早期强度高、细度细、C3S含量高等都是表象而非本质。化学减缩增加,早期水化热增加,开裂风险增加,皆为水泥早期水化速率过快的结果。从水泥行业技术推进的角度,提出了不显著增加环境、能源和资源代价,同时能够显著改善混凝土耐久性的水泥质量改进技术路线,主要内容是使用低C3A、C3S含量的熟料,采用分别粉磨工艺,生产早期水化速率低,而强度并不太低的水泥。  相似文献   

3.
将磨制好的水泥筛分成S(0~30μm),M(30~60μm)和L(60~160μm)这3个粒级,测试了每个粒级水泥的颗粒粒径分布和主要矿物相含量,并对其早期水化放热速率、水化产物组成及形貌进行了对比分析.结果表明:3个粒级水泥的主要矿物相含量各异,其中C3S含量大小依次为LMS,C2S,C3A和CaSO4·2H2O含量大小均依次为SML;3个粒级水泥浆体的水化放热速率大小依次为SLM;在水化早期,S大多水化成针棒状AFt,而M,L大多水化成凝胶状AFm和薄片状C4AH13.  相似文献   

4.
赵成安 《市政技术》2020,(1):262-264
为研究硅灰对水泥性能的影响,通过测定水化过程中C3S和β-C2S的变化,得岀如下结论:硅灰的加入加速了C3S的早期水化,尤其是3d前的水化;3d以后,硅灰的这种加速作用逐渐减缓直到28 d龄期;之后.C-SF体系中C3S的水化近乎停止;硅灰掺量越高、水灰比越低,则C3S和β-C2S在28-112 d期间的水化减速就越明显。由此可见,在水泥中掺入硅灰能够调节水化过程的快慢,进而在实际工程中可以结合丁程项目所需混凝土的特点,来配制早强水泥。  相似文献   

5.
研究了水泥熟料单矿物C3S ,β C2 S和C3A在 40°C封闭气相中的水化情况 ,其中 ,气相相对湿度变化范围为 85 .0 %~ 99.0 % .结果表明 :C3S在气相中水化能力比较弱 ,在高相对湿度 (RH >97.5 % )气相中能逐步水化 ,但在低相对湿度 (RH =95 % )气相中 ,水化速率非常慢 ;β C2 S在气相中水化能力很弱 ;C3A在气相中水化能力比较强 .  相似文献   

6.
基于水化动力学模型,采用SEM、XRD和C-80Ⅱ型导热式微量热仪研究了硅酸盐水泥和掺P2O5硅酸盐水泥胶凝体系的水化特性和水化动力学,分析了P2O5对硅酸盐水泥水化机制的影响规律。研究结果表明,掺入P2O5后硅酸盐水泥的水化产物数量和尺寸显著减小。P2O5掺量为3.5%时,硅酸盐水泥熟料水化热总量降低32.6%,硅酸盐水泥的初凝和终凝分别被延缓1.10 h和12.54 h。掺入P2O5复合体系的水化机制与硅酸盐水泥类似,加速期由自动催化反应控制,减速期由自动催化和扩散反应双重反应控制,稳定期扩散反应占据主导。P2O5会增加硅酸盐水泥在加速期和减速期的水化反应阻力,减小稳定期的水化反应阻力。掺入P2O5后,水泥在加速期和减速期的表观活化能增加,稳定期表观活化能略有降低。P2O5溶液环境有利于水泥熟料C3A的水化,延缓C3S和C2S的水化。  相似文献   

7.
为了解低热硅酸盐水泥早期水化特性,采用等温量热仪测试水化热,分析低热和中热硅酸盐水泥的水化过程,基于动力学和热力学模型模拟水化进程和水化产物演变。结果表明:由于C2S含量较多,低热硅酸盐水泥前期的水化速率较慢,水化程度总体上低于中热水泥;水灰比越大,最终放热量越高。低热和中热硅酸盐水泥1、3 d的水化产物分别占总体积的32.20%、47.66%和38.20%、53.92%;低热硅酸盐水泥早期生成的C-S-H凝胶与中热硅酸盐水泥相当。考虑到水泥水化的影响因素包括水灰比、温度和比表面积,基于动力学模型和吉布斯自由能最小化进行水化动力学和热力学模型计算。  相似文献   

8.
结合扫描电镜(SEM),X射线衍射(XRD),差热-热重分析(DSC-TG)以及微量热仪等微观测试手段,研究了磷渣粉水泥基复合胶凝体系的水化特性.结果表明:磷渣粉的掺入只会影响水泥基材料的水化产物类型和数量,但不会改变水化产物的种类,水化产物中没有观察到羟基磷灰石的存在.磷渣粉的掺入不会影响C3A的水化,但会延缓水泥熟料中C3S和C2S的水化,磷渣粉主要通过延缓水化诱导期来实现水泥胶凝体系的缓凝.掺磷渣粉复合胶凝体系诱导期后各阶段的水化反应阻力减小、水化反应速率增加,但整个复合胶凝体系的总体水化程度降低,降低幅度随着龄期增长不断减小.  相似文献   

9.
在聚羧酸减水剂与木钠复合二元体系中,研究了木钠掺量对体系分散性及凝结时间的影响,结合XRD分析了木钠对水泥水化机理的影响。实验结果表明:在木钠与聚羧酸减水剂复配体系中,木钠对初始分散性的影响不大,但可以增加流动保持性;木钠具有较强的缓凝作用,随掺量的增加,凝结时间增加;木钠减水剂能有效抑制C3S、C3A的早期水化;当掺量为0.4%以下,对后期水化影响较小,而掺量达到0.6%时,抑制中后期C3S的水化。  相似文献   

10.
矿粉、高钙灰及脱硫石膏对水泥收缩性能的影响   总被引:2,自引:0,他引:2  
研究了50.0%(质量分数,下同)矿粉和高钙粉煤灰等量替代水泥对水泥净浆早期自收缩性能的影响及水泥砂浆的长期干燥收缩性能和初始开裂敏感性.结果表明,在水泥-矿物材料体系中,自收缩与矿物材料的水化活性成正相关性,用50.0%的矿粉和高钙粉煤灰替代水泥后,水泥浆体的自收缩率随着矿物材料活性的降低而降低;硫酸盐激发材料既具有增加水化程度和提高化学收缩的作用,又具有增加AFt量和产生膨胀的作用,因而对水泥浆体的自收缩影响不大;掺50.0%矿粉及1.0%元明粉可显著提高干燥收缩;脱硫石膏和煅烧脱硫石膏按照一定比例复合能显著降低干燥收缩;初始开裂时间、自收缩与矿物材料水化活性的相关性较大,自收缩越高则其开裂敏感性越大,早强措施增加开裂风险;采用矿物材料尤其是采用低活性矿物材料替代水泥可使水泥水化减缓,自收缩和干燥收缩减少,开裂敏感性降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号