首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Activity in thiophene hydrodesulfurization (HDS) and in the three routes of 2,6-dimethylaniline (DMA) decomposition was examined on Mo sulfide catalysts supported on Al2O3, Nb2O5 and Nb2O5–Al2O3. Catalysts activity is enhanced when Mo phase is deposited on niobium-containing support. For HDS and for the hydrogenation route of DMA decomposition, the niobium-containing support strongly contributes to the catalyst activity whereas the activity of the Mo phase per Mo atom decreases with the increase of niobium amount in the support. By contrast, as for the DMA route, which leads to xylene formation (XYL), the activity of the Mo sulfide phase per Mo atom is strongly enhanced. The electronic properties of the MoS2 phase were studied by means of IR spectroscopy of CO adsorption. Comparison of ν(CO/Mo) wavenumbers reveals an upward shift when Mo sulfide phase is deposited on Nb-containing support. The modification of the electronic properties of the sulfide phase is related to an interaction Mo–Nb either through the formation of a mixed Mo–Nb sulfide phase, or through the interaction MoS2 slabs – support whose strength depends on the support acidity. Hence, the beneficial effect for xylene formation route is attributed to a decrease of the electron density of the Mo sulfide phase that should strengthen the DMA adsorption on the sulfide phase.  相似文献   

2.
The reaction network of indole hydrodenitrogenation (HDN) was investigated over γ-Al2O3 supported NiMo sulfide catalysts in an effort to acquire a fundamental understanding of the different reaction pathways in the mechanism. Experiments were performed primarily at 1000 psig, using a wide range of temperatures and feed concentrations. The effect of H2S on different reaction steps of the network was also investigated. Two major pathways were proposed to account for the formation of ethylcyclohexane (ECH) and ethylbenzene (EB) which are the two main HDN products from indole. One route occurs from the hydrogenolysis of indoline to o-ethylaniline (OEA) and the other from the hydrogenation of indoline to octahydro-indole. Also included in the proposed mechanism is a secondary route from o-ethylcyclohexylamine (OECHA) to ethylcyclohexene (ECHE), that occurs through a nucleophilic substitution reaction. The product distribution was a strong function of temperature and H2S concentration. H2S enhanced the hydrogenolysis reactions but inhibited the hydrogenation reactions.  相似文献   

3.
A series of Re-containing catalysts supported on activated carbon, with Re loading between 0.74 and 11.44 wt.% Re2O7, was prepared by wet impregnation and tested in the simultaneous hydrodesulphurisation (HDS) and hydrodenitrogenation (HDN) of a commercial gas oil. Textural analysis, XRD, X-ray photoelectron spectroscopy (XPS) and surface acidity techniques were used for physicochemical characterisation of the catalysts. Increase in the Re concentration resulted in a rise in the HDS and HDN activity due to the formation of a monolayer structure of Re and the higher surface acidity. At Re concentrations >2.47 wt.% Re2O7 (0.076 Re atoms nm−2) the reduction in the catalytic activity was related to the loss in specific surface area (BET) due to reduction in the microporosity of the carbon support. The magnitude of the catalytic effect was different for HDS and HDN, and depended strongly on the Re content and reaction temperature. The apparent activation energies were about 116–156 kJ mol−1 for HDS and 24–30 kJ mol−1 for HDN. This led to a marked increase in the HDN/HDS selectivity with decreasing temperature (values >3 at 325 °C), due to the large differences in the apparent activation energies of HDS and HDN found for all catalysts. A gradual increase in the HDN/HDS selectivity with increased Re loading was also found and related to the observed increase of catalyst acidity. The results are compared with those obtained for a series of Re/γ-Al2O3 catalysts.  相似文献   

4.
The hydrodenitrogenation (HDN) and hydrodesulfurization (HDS) activity of a series of NiMo/Al2O3 catalyst containing boron (B) and phosphorus (P) were tested in a trickle bed reactor using heavy gas oil derived from Athabasca bitumen. Detailed characterization of these catalysts is given in Part I of this paper. Addition of B and P caused the formation of extremely strong acid sites on the catalyst and enhanced its HDN activity. The total (TN), basic (BN) and non-basic nitrogen (NBN) conversions increased from 61.9 to 78.0 wt.%, from 78.9 to 93.0 wt.% and from 52.8 to 70.0 wt.%, respectively, with the increase in B concentration from 0 to 1.7 wt.% to NiMo/Al2O3 catalyst. Similarly, TN, BN and NBN conversions increased from 61.9 to 78.4 wt.%, from 78.9 to 91.0 wt.%, and from 52.8 to 71.6 wt.% with the addition of 2.7 wt.% P. Though the addition of B and P to NiMo/Al2O3 catalyst did not show any significant effect on S conversion, the HDN and HDS activities of the catalyst containing 1.7 wt.% B and the one containing 2.7 wt.% P are comparable to those of a commercial catalyst. The activity over extended period indicated that catalysts L and K were more stable (lower deactivation rate) in terms of nitrogen removal activity than catalyst B (reference catalyst). On the other hand, the stability for sulfur removal was comparable with catalyst B. Selected catalysts after use were characterized using BET surface area, TPR, TPD and SEM techniques which were correlated further with their activities.  相似文献   

5.
A study on the catalytic properties of the transition metals (Ni,Co,Mo)-carbides, -nitrides for thiophene and dibenzothiophene hydrotreating was conducted. The (Ni,Co)-Mo carbides and the corresponding (Ni,Co)-Mo nitride phases showed a catalytic activity higher than conventional bimetallic (Ni,Co)-Mo sulfides. In addition, a study was done on the effect of the atomic ratios, i.e., 0.1 ≤ M+/(M+ + Mo) ≤ 0.9 where M+ stands for Ni or Co, and the concentration of promoters such as phosphorous, which was a structural stabilizing agent. The catalytic performance of the bimetallic NiMo and CoMo carbides and nitrides was studied using thiophene and dibenzothiophene hydrodesulfurization (HDS) as model reactions at 623 K and P = 1 atm. The catalytic activity of the dispersed carbide and nitride phases on the alumina carrier was more significant than that of the reference catalysts, alumina supported NiMo-S and CoMo-S. The metallic character of the NiMo and CoMo carbides was evidenced by their higher hydrogenation activity in thiophene HDS, while the nitrides favored both hydrogenation and hydrogenolysis type reactions.  相似文献   

6.
以中和法合成的不同SiO2含量的改性氧化铝为载体,本文制备系列Si改性的NiMo/Al2O3催化剂,采用X射线衍射(XRD)、N2物理吸附(BET)、程序升温脱附(NH3-TPD)、吡啶吸附红外光谱(Py-IR)、程序升温还原(H2-TPR)、高分辨透射电镜(HRTEM)和X射线光电子能谱(XPS)等分析手段进行详细表征。表征结果显示,引入Si减弱了活性金属与载体之间的相互作用,改善了催化剂的孔结构与表面酸性分布,提高了活性相分散度和金属硫化度,促使形成更多的II类NiMoS活性相。以二苯并噻吩(DBT)为模型化合物,在固定床加氢装置上考察了系列催化剂的加氢脱硫(HDS)性能,结果表明,引入Si可降低DBT的加氢反应活化能,提高反应速率常数,进而提高催化剂的加氢脱硫活性。对比DBT转化率在50%时的脱硫产物分布表明引入Si可影响催化剂的反应路径选择性,直接脱硫路径(DDS)选择性从83.69%增加至92.89%,证实了催化剂的表征规律。  相似文献   

7.
金属氮化物/碳化物催化剂加氢性能研究进展   总被引:3,自引:0,他引:3  
介绍了过渡金属氮化物/碳化物独特的晶体结构和电子性能及其与催化性能的内在联系。综述了过渡金属氮化物/碳化物在涉氢反应中催化加氢机理的研究进展,以及过渡金属氮化物/碳化物在加氢脱硫(HDS)、加氢脱氮(HDN)和其他涉氢反应中的应用。与传统的过渡金属硫化物催化剂相比,过渡金属氮化物/碳化物具有更加优异的氢吸附、活化和转移能力。  相似文献   

8.
Hydrotreating of Maya heavy crude oil over high specific surface area CoMo/TiO2–Al2O3 oxide supported catalysts was studied in an integral reactor close to industrial practice. Activity studies were carried out with Maya crude hydrodesulfurization (HDS), hydrodemetallization (HDM), hydrodenitrogenation (HDN), and hydrodeasphaltenization (HDAs) reactions. The effect of support composition, the method of TiO2 incorporation, and the catalyst deactivation are examined. Supported catalysts are characterized by BET specific surface area (SSA), pore volume (PV), pore size distribution (PSD), and atomic absorption. It has been found that sulfided catalysts showed a wide range of activity variation with TiO2 incorporation into the alumina, which confirmed that molybdenum sulfided active phases strongly depend on the nature of support. The pore diameter and nature of the active site for HDS, HDM, HDN, and HDAs account for the influence of the large reactant molecules restricted diffusion into the pore, and/or the decrease in the number of active sites due to the MoS2 phases buried with time-on-stream. The textural properties and hysteresis loop area of supported and spent catalysts indicated that catalysts were deactivated at the pore mouth due to the metal and carbon depositions. The atomic absorption results agreed well regarding the textural properties of spent catalysts. Thus, incorporation of TiO2 with γ-Al2O3 alters the nature of active metal interaction with support, which may facilitate the dispersion of active phases on the support surface. Therefore, the TiO2 counterpart plays a promoting role to HDS activity due to the favorable morphology of MoS2 phases and metal support interaction.  相似文献   

9.
A series of Mo2C/SBA-15 catalysts with different Mo contents were prepared by temperature-programmed carburization (TPC). The materials obtained and their oxide precursors (MoO3/SBA-15) were characterized by Nitrogen adsorption-desorption isotherms, X-ray diffraction (XRD), and Fourier transform-infrared (FT-IR) spectroscopy. The activities of the catalysts for deep hydrodesulfurization (HDS) of thiophene were evaluated. The results of N2 adsorption-desorption isotherms indicated that the surface area and pore diameter of the oxide precursors increase after carburization. The XRD patterns show that Mo2C particles are highly dispersed in the SBA-15 ordered mesoporous. The test results show that Mo2C/SBA-15 catalysts have an excellent performance for the deep HDS under the lower temperature region.  相似文献   

10.
Two types of catalysts containing NiW bimetallic sulfide nanostructures were prepared by a chemical method employing ammonium thiotungstate and nickel nitrate as metal-sulfide precursors followed by sulfidation in H2S/H2 at 400 °C. The nanostructures were grown with excess of Ni, at atomic ratio R = 0.75, 0.85 (R = Ni/Ni + W). High resolution electron microscopy (HRTEM) micrographs revealed the formation of two types of nanostructures, nickel sulfide nanoparticles and long nanorods of tungsten suboxide, both coated by WS2 layers. The Ni/W catalyst containing mostly nanorods presented twice the catalytic activity (pseudo-zero order constant rate k = 12 × 10−7 mol/s.g) of the Ni/W catalyst containing nanoparticles (k = 6.3 × 10−7 mol/s.g) with a low selectivity for tetrahydrodibenzothiophene (THDBT) and high selectivity to cyclohexylbenzene (CHB, 50 mol%). In turn the Ni/W catalyst containing nanoparticles presented a catalytic activity comparable to a Ni/Mo catalyst without inorganic fullerene (IF) nanostructures (k = 7.2 × 10−7 mol/s.g) but with higher selectivity for hydrogenation to THDBT, (14 mol%) than the sample with nanorods.  相似文献   

11.
N. Sivasankar  R. Prins   《Catalysis Today》2006,116(4):542-553
The mechanism of the hydrodenitrogenation of the mixed dialkyl- and trialkylamines C1NHC6 and C1N(C6)2 was studied over sulfided NiMo/γ-Al2O3 at 280 °C and 3 MPa. C1NHC6 reacted by disproportionation to C1N(C6)2 as well as C6N(C1)2 and by substitution by H2S to methylamine and hexanethiol as well as hexylamine and methanethiol. C1N(C6)2 reacted by substitution with H2S to C1NHC6 and C6NHC6 and methane- and hexanethiol. The probability of breaking the C1N bond was only slightly smaller than of breaking the C6N bond in C1N(C6)2. In the reaction of an equimolar mixture of C5NHC5 and C1N(C6)2 both C1N(C5)2 and C6N(C5)2 were formed. The transfer of the methyl group in these reactions cannot be explained by imine and enamine intermediates, only iminium cation intermediates can explain all the products in the hydrodenitrogenation of monoalkyl-, dialkyl- and trialkylamines.  相似文献   

12.
Impregnation of oxidic precursor with thioglycolic acid aqueous solution was successfully used to improve the performances of thiophene hydrodesulfurization catalysts. Raman, EXAFS and XPS studies indicate that addition of this chelating agent affects the sulfidation of the supported metals. The higher catalytic performances were attributed to an optimization of the nature and morphology of the active phase obtained by the use of this chelating agent which permits a simultaneous sulfidation of both Co and Mo atoms.  相似文献   

13.
14.
The effect of the TiO2–Al2O3 mixed oxide support composition on the hydrodesulfurization (HDS) of gasoil and the simultaneous HDS and hydrodenitrogenation (HDN) of gasoil+pyridine was studied over two series of CoMo and NiMo catalysts. The intrinsic activities for gasoil HDS and pyridine HDN were significantly increased by increasing the amount of TiO2 into the support, and particularly over rich- and pure-TiO2-based catalysts. It is suggested that the increase in activity be due to an improvement in reducing and sulfiding of molybdena over TiO2. The inhibiting effect of pyridine on gasoil HDS was found to be similar for all the catalysts, i.e., was independent of the support composition. The ranking of the catalysts for the gasoil HDS test differed from that obtained for the thiophene test at different hydrogen pressures. In the case of gasoil HDS, the activity increases with TiO2 content and large differences are observed between the catalysts supported on pure Al2O3 and pure TiO2. In contrast, in the case of the thiophene test, the pure Al2O3-based catalyst appeared relatively more active than the catalysts supported on mixed oxides. Also, in the thiophene test the difference in intrinsic activity between the pure Al2O3-based catalyst appeared relatively more active than the catalysts supported on mixed oxides. Also in the thiophene test, the difference in intrinsic activity between the pure Al2O3- and pure TiO2-based catalysts is relatively small and dependent on the H2 pressure used. Such differences in activity trend among the gasoil and the thiophene tests are due to a different sensitivity of the catalysts (by different support or promoter) to the experimental conditions used. The results of the effect of the H2 partial pressure on the thiophene HDS, and on the effect of H2S concentration on gasoil HDS demonstrate the importance of these parameters, in addition to the nature of the reactant, to perform an adequate catalyst ranking.  相似文献   

15.
Ni–Mo/Al2O3–MCM-41 supported catalysts have been investigated for modification of MCM-41 by using sol–gel alumina incorporation method. Different catalysts were synthesized with variation of Si/Al molar ratios of 10, 50, 100 and 200. High specific surface area ordered meso-porous solid (MCM-41) was synthesized by using organic template method. In order to modify the low acidity of silica solid, the surface of MCM-41 was modified by incorporation of alumina. The surface acidity of solids modified significantly with variation of alumina content in the supports. The sol–gel method of alumina incorporation was used, which does not modify extensively the pore characteristics of MCM-41 material during the preparation of Al2O3–MCM-41. The X-ray diffraction intensities indicated that alumina as well as MCM-41 were present in the synthesized supports. Additionally, the hydrothermal stability of the Al2O3–MCM-41 materials was maintained up to 873 K using sever conditions like 100% water vapor stream. The catalytic activity of the catalysts was tested in the hydrodesulfurization (HDS) of dibenzothiophene (DBT). Selectivity was oriented mainly to the production of biphenyl (BP) and for high Si/Al ratios toward cyclohexylbenzene (CHB) and showed a higher conversion and better selectivity to hydrogenation (cyclohexylbenzene).  相似文献   

16.
The influence of the acidity of ultrastable Y (USY) zeolite-supported tungsten or nickel sulfide catalysts, prepared at different pH values, on thiophene hydrodesulfurization activity has been studied. The acidity affects the catalysts' deactivation. The results of the initial activity clearly show a synergic effect between the metal sulfide centers and the Brønsted acid sites present in the zeolites. © 1998 SCI  相似文献   

17.
18.
Freshly prepared and used H/Na, K-T-zeolite catalysts for the conversion of dimethyl ether and ammonia to the three methylamines have been characterized by temperature-programmed desorption of ammonia and IR spectroscopy. Activity and selectivity depend on the nature and number of the acid sites. With time on-stream, deep alterations in the catalyst behaviour have been observed. The activity of the catalyst is decreased by blocking of active sites 5–10 h: furthermore, during an initial period hydrocarbons were formed almost exclusively on strong-acid sites. A second period is characterized by an increased shape selectivity observed in the distribution of the methylamines. The amination will proceed probably on left weak-acid sites and on the outer surface in a third period, however, without shape selectivity due to the progressive blocking of the inner catalyst surface.  相似文献   

19.
This paper describes the role of Sb and Nb, components of Sn/V/Nb/Sb mixed oxides catalysts for the gas-phase ammoxidation of propane to acrylonitrile. In samples without Nb and with atomic ratios Sn/V/Sb 1/0.2/x (x = 0 to 3), Sb in the form of amorphous oxide is necessary in order to obtain an active and selective catalyst. However, during reaction the dispersed Sb oxide segregates to α-Sb2O4, and the yield to acrylonitrile decreases considerably. The addition of Nb gives rise to the formation of Nb-containing SbOx and non-stoichiometric rutile-type V/Nb/Sb mixed oxides. The presence of these compounds enhances the catalytic activity and the selectivity to acrylonitrile. Moreover, the catalyst shows a stable catalytic performance, with no segregation of α-Sb2O4.  相似文献   

20.
Phosphorous-doped NiMo/Al2O3 hydrodesulfurization (HDS) catalysts (nominal Mo, Ni and P loadings of 12, 3, and 1.6 wt%, respectively) were prepared using ethyleneglycol (EG) as additive. The organic agent was diluted in aqueous impregnating solutions obtained by MoO3 digestion in presence of H3PO4, followed by 2NiCO3·3Ni(OH)2·4H2O addition. EG/Ni molar ratio was varied (1, 2.5 and 7) to determine the influence of this parameter on the surface and structural properties of synthesized materials. As determined by temperature-programmed reduction, ethyleneglycol addition during impregnation resulted in decreased interaction between deposited phases (Mo and Ni) and the alumina carrier. Dispersion and sulfidability (as observed by X-ray photoelectron microscopy) of molybdenum and nickel showed opposite trends when incremental amounts of the organic were added during catalysts preparation. Meanwhile Mo sulfidation was progressively decreased by augmenting EG concentration in the impregnating solution, more dispersed sulfidic nickel was evidenced in materials synthesized at higher EG/Ni ratios. Also, enhanced formation of the so-called “NiMoS phase” was registered by increasing the amount of added ethyleneglycol during simultaneous Ni–Mo–P–EG deposition over the alumina carrier. That fact was reflected in enhanced activity in liquid-phase dibenzothiophene HDS (batch reactor, T = 320 °C, P = 70 kg/cm2) and straight-run gas oil desulfurization (steady-state flow reactor), the latter test carried out at conditions similar to those used in industrial hydrotreaters for the production of ultra-low sulfur diesel (T = 350 °C, P = 70 kg/cm2, LHSV = 1.5 h−1 and H2/oil = 2500 ft3/bbl).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号