首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In recent years, various single-molecule electronic components have been demonstrated. However, it remains difficult to predict accurately the conductance of a single molecule and to control the lateral coupling between the π orbitals of the molecule and the orbitals of the electrodes attached to it. This lateral coupling is well known to cause broadening and shifting of the energy levels of the molecule; this, in turn, is expected to greatly modify the conductance of an electrode-molecule-electrode junction. Here, we demonstrate a new method, based on lateral coupling, to mechanically and reversibly control the conductance of a single-molecule junction by mechanically modulating the angle between a single pentaphenylene molecule bridged between two metal electrodes. Changing the angle of the molecule from a highly tilted state to an orientation nearly perpendicular to the electrodes changes the conductance by an order of magnitude, which is in qualitative agreement with theoretical models of molecular π-orbital coupling to a metal electrode. The lateral coupling is also directly measured by applying a fast mechanical perturbation in the horizontal plane, thus ruling out changes in the contact geometry or molecular conformation as the source for the conductance change.  相似文献   

2.
We report measurements of shot noise in the current through a single D2 molecule. The molecular junctions were formed by means of the mechanically controllable break junction technique. The configuration of the D2 molecule bridging the gap between two Pt tips is verified by use of point contact spectroscopy. Maintaining the same junction shot noise measurements were performed and the observed quantum suppression shows that conductance is carried dominantly by a single, almost fully transparent conductance channel. This observation allows us to decide between conflicting model calculations for this system, and this may serve as a benchmark for further computations on molecular junctions.  相似文献   

3.
The ability to control the conductance of single molecules will have a major impact in nanoscale electronics. Azobenzene, a molecule that changes conformation as a result of a trans/cis transition when exposed to radiation, could form the basis of a light-driven molecular switch. It is therefore crucial to clarify the electrical transport characteristics of this molecule. Here, we investigate, theoretically, charge transport in a system in which a single azobenzene molecule is attached to two carbon nanotubes. In clear contrast to gold electrodes, the nanotubes can act as true nanoscale electrodes and we show that the low-energy conduction properties of the junction may be dramatically modified by changing the topology of the contacts between the nanotubes and the molecules, and/or the chirality of the nanotubes (that is, zigzag or armchair). We propose experiments to demonstrate controlled electrical switching with nanotube electrodes.  相似文献   

4.
Xia JL  Diez-Perez I  Tao NJ 《Nano letters》2008,8(7):1960-1964
We describe a method to determine whether a measured current in a break junction is due to electron tunneling via space or conduction through a molecule bridged between two electrodes. By modulating the electrode separation, we monitor both the DC and the AC components of the current. The AC component indicates if a molecule is connected to the electrodes while the DC component is the transport current through the molecule. This method allows us to remove the tunneling background from conductance histograms and unambiguously measure the I- V characteristic of single molecules. Furthermore, it provides valuable information about the electromechanical properties of single molecules.  相似文献   

5.
A basic aim in molecular electronics is to understand transport through a single molecule connected to two electrodes. Substantial progress towards this goal has been made over the past decade as a result of advances in both experimental techniques and theoretical methods. Nonetheless, a fundamental and technologically important issue, current-induced local heating of molecules, has received much less attention. Here, we report on a combined experimental and theoretical study of local heating in single molecules (6-, 8- and 10-alkanedithiol) covalently attached to two gold electrodes as a function of applied bias and molecular length. We find that the effective local temperature of the molecular junction first increases with applied bias, and then decreases after reaching a maximum. At fixed bias, the effective temperature decreases with increasing molecular length. These experimental findings are in agreement with hydrodynamic predictions, which include both electron-phonon and electron-electron interactions.  相似文献   

6.
Hihath J  Tao N 《Nanotechnology》2008,19(26):265204
A new device for measuring the conductance values of single-molecule junctions which are covalently bound to two electrodes is presented. The system works by repeatedly bringing two electrodes into and out of contact in a solution of molecules while measuring the current between the two electrodes during withdrawal. When molecules connect the two electrodes, steps occur in the current transient, and a statistical analysis provides the most probable conductance value for a single-molecule junction. This system provides an order of magnitude increase in speed over previous devices used for single-molecule conductance measurements, and the applicability of this tool is demonstrated in array based measurements as well as in biologically relevant samples where the conductances of single amino acid residues are measured.  相似文献   

7.
One of the challenging goals of molecular electronics is to wire exactly one molecule between two electrodes. This is generally nontrivial under ambient conditions. We describe a new and straightforward protocol for unambiguously isolating a single organic molecule on a metal surface and wiring it inside a nanojunction under ambient conditions. Our strategy employs C(60) terminal groups which act as molecular beacons allowing molecules to be visualized and individually targeted on a gold surface using an scanning tunneling microscope. After isolating one molecule, we then use the C(60) groups as alligator clips to wire it between the tip and surface. Once wired, we can monitor how the conductance of a purely one molecule junction evolves with time, stretch the molecule in the junction, observing characteristic current plateaus upon elongation, and also perform direct I-V spectroscopy. By characterizing and controlling the junction, we can draw stronger conclusions about the observed variation in molecular conductance than was previously possible.  相似文献   

8.
We have investigated electrical conductance of the single C60 and benzene molecules bridging between metal electrodes. The single C60 and benzene molecular junctions were prepared in ultra high vacuum. The single molecular junctions showed the high conductance values (around 0.1–1 G0: G0 = 2e2/h), which were comparable to that of the metal atomic contact. The highly conductive single molecular junctions could be prepared by direct binding of the π-conjugated organic molecule to the metal electrodes without the use of anchoring groups. For comparison, the single 1,4-benzenediamine molecular junction was investigated in solution. The benzene molecule was bound to the Au electrodes via amine (anchoring group) for the single 1,4-benzenediamine molecular junction. The conductance of the single 1,4-benzenediamine molecular junction was 8 × 103G0. It was suggested that the anchoring groups acted as resistive spacers between the molecule and metal.  相似文献   

9.
Research in molecular electronics often involves the demonstration of devices that are analogous to conventional semiconductor devices, such as transistors and diodes, but it is also possible to perform experiments that have no parallels in conventional electronics. For example, by applying a mechanical force to a molecule bridged between two electrodes, a device known as a molecular junction, it is possible to exploit the interplay between the electrical and mechanical properties of the molecule to control charge transport through the junction. 1,4'-Benzenedithiol is the most widely studied molecule in molecular electronics, and it was shown recently that the molecular orbitals can be gated by an applied electric field. Here, we report how the electromechanical properties of a 1,4'-benzenedithiol molecular junction change as the junction is stretched and compressed. Counterintuitively, the conductance increases by more than an order of magnitude during stretching, and then decreases again as the junction is compressed. Based on simultaneously recorded current-voltage and conductance-voltage characteristics, and inelastic electron tunnelling spectroscopy, we attribute this finding to a strain-induced shift of the highest occupied molecular orbital towards the Fermi level of the electrodes, leading to a resonant enhancement of the conductance. These results, which are in agreement with the predictions of theoretical models, also clarify the origins of the long-standing discrepancy between the calculated and measured conductance values of 1,4'-benzenedithiol, which often differ by orders of magnitude.  相似文献   

10.
We report on single molecule electron transport measurements of two oligophenylenevinylene (OPV3) derivatives placed in a nanogap between gold (Au) or lead (Pb) electrodes in a field effect transistor device. Both derivatives contain thiol end groups that allow chemical binding to the electrodes. One derivative has additional methylene groups separating the thiols from the delocalized pi-electron system. The insertion of methylene groups changes the open state conductance by 3-4 orders of magnitude and changes the transport mechanism from a coherent regime with finite zero-bias conductance to sequential tunneling and Coulomb blockade behavior.  相似文献   

11.
A combined experimental and theoretical investigation is carried out into the electrical transport across a fullerene dumbbell one‐molecule junction. The newly designed molecule comprises two C60s connected to a fluorene backbone via cyclopropyl groups. It is wired between gold electrodes under ambient conditions by pressing the tip of a scanning tunnelling microscope (STM) onto one of the C60 groups. The STM allows us to identify a single molecule before the junction is formed through imaging, which means unambiguously that only one molecule is wired. Once lifted, the same molecule could be wired many times as it was strongly fixed to the tip, and a high conductance state close to 10?2 G0 is found. The results also suggest that the relative conductance fluctuations are low as a result of the low mobility of the molecule. Theoretical analysis indicates that the molecule is connected directly to one electrode through the central fluorene, and that to bind it to the gold fully it has to be pushed through a layer of adsorbates naturally present in the experiment.  相似文献   

12.
A pyrazine molecular junction was investigated using mechanically controllable break junction (MCBJ) technique at 10 K. The conductance measurements revealed the single pyrazine molecular junctions showed two distinct conductance values of 0.27 ± 0.04 and 1.0 ± 0.2 G 0 (2e 2/h). The conductance value of the single pyrazine molecular junction was comparable with that of the metal atomic junction. The interface between pyrazine molecule and Pt surface was investigated by near edge X-ray absorption fine structure (NEXAFS). The broadening of the π* peak in N K-edge NEXAFS spectra suggested that the pyrazine molecule connected to Pt surface via a nitrogen atom. Based on the measurements of the conductance and NEXAFS, we could propose the structural models of two distinct conductance states for the single pyrazine molecular junction.  相似文献   

13.
Kim Y  Pietsch T  Erbe A  Belzig W  Scheer E 《Nano letters》2011,11(9):3734-3738
More than a decade after the first report of single-molecule conductance, it remains a challenging goal to prove the exact nature of the transport through single molecules, including the number of transport channels and the origin of these channels from a molecular orbital point of view. We demonstrate for the archetypical organic molecule, benzenedithiol (BDT), incorporated into a mechanically controllable break junction at low temperature, how this information can be deduced from studies of the elastic and inelastic current contributions. We are able to tune the molecular conformation and thus the transport properties by displacing the nanogap electrodes. We observe stable contacts with low conductance in the order of 10(-3) conductance quanta as well as with high conductance values above ~0.5 quanta. Our observations show unambiguously that the conductance of BDT is carried by a single transport channel provided by the same molecular level, which is coupled to the metallic electrodes, through the whole conductance range. This makes BDT particularly interesting for applications as a broad range coherent molecular conductor with tunable conductance.  相似文献   

14.
An electronic conductance with small fluctuations, which is stipulated in single-molecule junctions, is necessary for the precise control of single-molecule devices. However, the suppression of conductance fluctuations in conventional molecular junctions is intrinsically difficult because the fluctuations are related to the contact fluctuations and molecular motion. In the present study involving experimental and theoretical investigations, it is found that covering a single π-conjugated wire with an α-cyclodextrin molecule is a promising technique for suppressing conductance fluctuations. The conductance histogram of the covered molecular junction measured with the scanning tunneling microscope break-junction technique shows that the conductance peak for the covered junction is sharper than that of the uncovered junction. The covering technique thus has two prominent effects: the suppression of intramolecular motion, and the elimination of intermolecular interactions. Theoretical calculations of electronic conductance clearly support these experimental observations.  相似文献   

15.
A straightforward method to generate both atomic‐scale sharp and atomic‐scale planar electrodes is reported. The atomic‐scale sharp electrodes are generated by precisely stretching a suspended nanowire, while the atomic‐scale planar electrodes are obtained via mechanically controllable interelectrodes compression followed by a thermal‐driven atom migration process. Notably, the gap size between the electrodes can be precisely controlled at subangstrom accuracy with this method. These two types of electrodes are subsequently employed to investigate the properties of single molecular junctions. It is found, for the first time, that the conductance of the amine‐linked molecular junctions can be enhanced ≈50% as the atomic‐scale sharp electrodes are used. However, the atomic‐scale planar electrodes show great advantages to enhance the sensitivity of Raman scattering upon the variation of nanogap size. The underlying mechanisms for these two interesting observations are clarified with the help of density functional theory calculation and finite‐element method simulation. These findings not only provide a strategy to control the electron transport through the molecule junction, but also pave a way to modulate the optical response as well as to improve the stability of single molecular devices via the rational design of electrodes geometries.  相似文献   

16.
The transport of charge through a conducting material depends on the intrinsic ability of the material to conduct current and on the charge injection efficiency at the contacts between the conductor and the electrodes carrying current to and from the material. According to theoretical considerations, this concept remains valid down to the limit of single-molecule junctions. Exploring this limit in experiments requires atomic-scale control of the junction geometry. Here we present a method for probing the current through a single C(60) molecule while changing, one by one, the number of atoms in the electrode that are in contact with the molecule. We show quantitatively that the contact geometry has a strong influence on the conductance. We also find a crossover from a regime in which the conductance is limited by charge injection at the contact to a regime in which the conductance is limited by scattering at the molecule. Thus, the concepts of 'good' and 'bad' contacts, commonly used in macro- and mesoscopic physics, can also be applied at the molecular scale.  相似文献   

17.
We point out that single electron charging effects such as coulomb blockade (CB) and high-bias staircases play a crucial role in transport through single ultrashort molecules. A treatment of CB through a prototypical molecule, benzene, is developed using a master-equation in its complete many-electron Fock space, evaluated through exact diagonalization or full configuration interaction (CI). This approach can explain a whole class of nontrivial experimental features including vanishing zero bias conductances, sharp current onsets followed by ohmic current rises, and gateable current levels and conductance structures, most of which cannot be captured even qualitatively within the traditional self-consistent field (SCF) approach coupled with perturbative transport theories. By comparing the two approaches, namely SCF and CB, in the limit of weak coupling to the electrode, we establish that the inclusion of strong correlations within the molecule becomes critical in addressing the above experiments. Our approach includes on-bridge correlations fully, and is therefore well-suited for describing transport through short molecules in the limit of weak coupling to electrodes.  相似文献   

18.
Ma G  Shen X  Sun L  Zhang R  Wei P  Sanvito S  Hou S 《Nanotechnology》2010,21(49):495202
The electronic transport properties of a single benzene molecule connected to gold and platinum electrodes through the direct Au-C or Pt-C bond are investigated by using a self-consistent ab initio approach that combines the non-equilibrium Green's function (NEGF) formalism with density functional theory (DFT). Our calculations show that the benzene molecule can bind to the Au(111) surface via direct Au-C bond at the adatom, atop and bridge sites. The largest zero-bias conductance is calculated for the bridge site but it is only G = 0.37G(0) (G(0) = 2e(2)/h). In contrast benzene binds to the Pt(111) surface via direct Pt-C bond only at the adatom and atop sites. When the binding site is the adatom a stable molecular junction forms with a zero-bias conductance as large as 1.15G(0). This originates from the efficient coupling between the extended π-type highest occupied molecular orbital of benzene and the conducting states of the Pt electrodes via the 5d(xz) atomic orbital of the adatoms. The calculated transmission is robust to the choice of DFT functionals, illustrating the potential of the Pt-C bond for constructing future molecular electronic devices.  相似文献   

19.
A microwave-plasma enhanced chemical-vapor-deposition (MPECVD) method was used to grow a solo multi-wall carbon nanofiber, which plays as a bridge across nickel electrodes that were separated by the photolithographic process. The length and diameter of carbon nanofiber are 3 microm and 100 nm, respectively. The single wire across the electrodes reveals a step current-voltage characteristic measured at high currents and low temperatures while shows a continuous behavior for multiple nanofibers. This stepwise conductance can be successfully dwelled by the quasi one-dimensional transport theory of conductors without considering the electron-phonon interaction at low temperatures and is expected to play a crucial role to determine the electrical behavior of these nanodevices.  相似文献   

20.
Xu BQ  Li XL  Xiao XY  Sakaguchi H  Tao NJ 《Nano letters》2005,5(7):1491-1495
We have studied the electron transport and electromechanical properties of single oligothiophenes with three and four thiophene repeating units covalently linked to two Au electrodes. The four-repeating unit molecule is found to be more conductive than the three-repeating unit molecule. This unusual length dependence is due to the different electronic states of the molecules. Both molecules can be switched reversibly between a high and low conducting state by oxidizing and reducing the molecules using an electrochemical gate. The conductance of the molecules decreases upon stretching, which is attributed to a force-induced increase in the HOMO-LUMO gap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号