首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-density sintered disks of the composition 0.13YO1.5·0.87ThO2 are shown to be mixed conductors at high oxygen pressures (>10−6 atm) by electrical conductivity and electrochemical cell measurements. The ac and dc conductivity measurements were made between 900° and 1600°C over a wide range of oxygen partial pressures. A blocking-electrode polarization technique for determining transference numbers was not applicable at high oxygen pressures but appeared to work at the lower pressures, indicating a transition to n -type behavior. The electrochemical cell measurements show essentially completely ionic behavior at low oxygen pressure but indicate at least 0.1% electronic contribution at 10−13 atm at 1000°C. The lower oxygen pressure limit for completely ionic behavior has not been determined but extends below the equilibrium pressures of an Mn-MnO2, Cr-Cr2O3 electrochemical cell at 1000°C.  相似文献   

2.
Ultrafine 5.5 mol% CeO2—2 mol% YO1.5ZrO2 powders with controllable crystallite size were synthesized by two kinds of coprecipitation methods and subsequent crystallization treatment. The amorphous gel produced by ammonia coprecipitation and hydrothermal treatment at 200°C for 3.5 h results in an ultrafine powder with a surface area of 206 m2/g and a crystallite size of 4.8 nm. The powder produced by urea hydrolysis and calcination exhibits a purely tetragonal phase. In addition, the powders crystallized by hydrothermal treatment exhibit high packing density and can be sintered at lower temperature (,1400°C) with nearly 100% tetragonal phase achieved.  相似文献   

3.
A wet-chemical approach is applied to derive fine powders with compositions 11 mol% CeO2-ZrO2, 1 mol% YO1.5-10 mol% CeO2-ZrO2, 12 mol% CeO2-ZrO2, and 2 mol% YO1.5-10 mol% CeO2-ZrO2 by the coprecipitation method. The characteristics of the as-derived powders are evaluated through thermal analysis and electron microscopy. The sintering behavior of the calcined powders is carried out at 1400° and 1500°C for 1 to 10 h. Sintered density higher than 98% of theoretical is achieved for sintering at 1400°C for several hours. The as-sintered density dependence on the sintering condition is related to the extent of tetragonal-to-monoclinic phase transformation as well as the associated microcracks. Partial substitution by Y2O3 in CeO2-ZrO2 results in reduced grain size and tends to stabilize the tetragonal structure. Y2O3 is more effective than CeO2 with respect to the grain size refinement and tetragonal stability. In addition, Y2O3 substitution in CeO2-ZrO2 increases the hardness, while it decreases the fracture toughness.  相似文献   

4.
Studies made on low-hafnium-content ZrO2, show that the monoclinic-tetragonal inversion temperature is 1170°C., and it is raised to approximately 1190°C. in the "natural" ZrO2, which contains approximately 2% HfO2. No explanation could be found for the knownmarked hysteresis during cooling, when the reverse polymorphic transformation takes dace at 1040°C. In the system ZrO2-ThO2 the monoclinic-tetragonal ZrO2, inversion temperature is lowered to 1000°C., although the maximum solid solution extent of ZrO2, in Thon and vice versa is approximately only 2% at this temperature. Below about 400°C. under hydrothermal conditions it was possible to prepare a continuous, although metastable series of solid solutions with the fluorite structurewith compositions varying from ThO2, to nearly pure ZrO2. Contrary to earlier work only 8 mole ZrO2, dissolves in UO2 and less than 4 mole of UO, in ZrO2 at temperatures up to 13OO0C. A continuous series of solid solutions could be made between Th2 and UO2 at 13OO°C., and extensive defect fluorite solid solutions could be prepared between Tho2 and U3O8; there is some evidence for exsolution into uranium-rich and thorium-rich members at low temperatures.  相似文献   

5.
Zirconia-yttria (ZrO2-12 mol% YO1.5) powders were prepared via an organic polymerized complex method that was based on the Pechini-type reaction route. A mixed solution of citric acid, ethylene glycol, and zirconium and yttrium ions were polymerized to form a transparent resin, which then became a black powder after charring at ∼450°C. This product was used as a precursor for ZrO2-12 mol% YO1.5. The formation of a metastable tetragonal ( t ´) phase with compositional homogeneity occurred when the precursor was heated at the rate of 10°C/min up to a temperature >560°C. X-ray diffraction peaks became sharp with an increase in the heat-treatment temperature. A t ´-form with cell parameters of a = 5.1265(6) Å and c = 5.1559(9) Å were obtained via heat treatment up to 1400°C. This study shows that the organic polymerized complex method is effective for obtaining the compositionally homogeneous metastable t ´-form in the ZrO2-YO1.5system for short annealing times at relatively lower temperatures.  相似文献   

6.
The pseudoternary system ZrO2-YO1.5CrO1.5 was studied between 1300° and 1600C in air by °a quenching method. No ordered phase of the type ZrY6O11 was detected, but an ordered Zr3Y4O12 phase at 1300°C and YCrO3 were observed as intermediate compounds. Solid solutions ofZrO2 and YO1.5 coexisting with CrO1.5 and/or YCrO3 formed; the apex occurred between 26.5 and 27.5 wt% YO1.5 for the cubic ZrO2+CrO1.5+YCrO3, three-phase region; CrO1.5 is slightly soluble in ZrO2(ss).  相似文献   

7.
The electrical conductivity and thermoelectric power of highpurity polycrystalline ThO2 in thermodynamic equilibrium with the gas phase were measured as a function of temperature from 1000° to 1600°C and as a function of oxygen partial pressure from 1 to 10−22 atm. An n -type electronic contribution to the conductivity is observed above 1400°C at low oxygen pressures. An analytic solution is presented for the oxygen pressure dependence of the total conductivity in the mixed ionicelectron hole conduction region observed at higher oxygen pressures. The activation energies for p -type and ionic conduction are 1.0 and 0.9 eV, respectively. The combined conductivity and thermal emf data give a lower limit of ∼6 cm2/V-s for the electron hole mobility.  相似文献   

8.
The phase equilibrium diagram of the system ThO2-Nb2O was redetermined near the composition Th2Nb2O9. This phase was found to melt incongruenlly at 1362°C, with a eutectic temperature at ∼1350°C. The peritectic and eutectic compositions must occur between 60 and ∼64 mol % ThO2. From single crystal and powder X-ray diffraction data, Th2 Nb2O9 was found to have a primitive monoclinic unit cell with a = 6.711(1), b = 25.254(5), c=7.757(1)×10−1nm, β=90.46 (1)°.  相似文献   

9.
The thermodynamic data for the YO1.5–BaO, BaO-CuOx, and YO1.5–CuOx quasi-binary systems were optimized from experimental phase diagrams. They were used to calculate tentative phase diagrams for the YO1.5–BaO—CuOx quasi-ternary system. The equilibrim liquidus surface and the isothermal sections of the ternary system at 900°, 925°, 950°, 975°, and 1000°C were calculated. The isopleths containing YBa2Cu3O7-δ were also calculated.  相似文献   

10.
The thermal conductivities of sintered pellets of ThO2-1.3 wt% U02 were measured at 60°C before and after irradiation. The irradiation temperature was below 156°C, and the exposures varied from 3.1 × 1014 to 4.7 × loL7 fissions/cm3. Each fission fragment damaged a region of 2.2 × 10-16 cm3 with the reduction in conductivity saturating by about 1017 fissions/cm3. Samples having exposures from 1015 to 1016 fissions/cm3 were annealed isothermally at 651 °C or isochronally from 300° to 1200° C to study the annealing of damage. Most of the annealing occurred between 500° and 900°C. The width of this interval plus the slow isothermal annealing suggest that the damage is annealed by a number of single order processes with a spectrum of activation energies from 1.8 to 3.9 eV or, less probably, by a high order process with an activation energy of 3.55 ± 0.4 eV.  相似文献   

11.
The subsolidus phase equilibrium diagram for the pseudobinary join MgAl2O4-Ga2O3 was determined. The shape of the exsolution boundary was obtained by heat-treating samples pre- equilibrated at 1600°C. Crystalline solubility of Ga2O3 in MgAl2O4 decreased from 73 mole % at 1600°C to 55 mole % at 1200°C. The crystalline solution was formed by the replacement of Mg2+ions by Ga3+ ions to produce a cation defect spinel. The phase precipitated was the mono-clinic δ-Ga2O3 (=δ-Al2O3 structure). Changes in the ratios of relative X-ray diffraction intensities indicated that the crystalline solutions also disorder with temperature.  相似文献   

12.
(Na0.5K0.5)NbO3 (NKN) ceramic with 1.5 mol% CuO added (NKNC) was well sintered even at a low temperature of 900°C with the addition of ZnO. Most of the ZnO reacted with the CuO and formed the liquid phase that assisted the densification of the specimens at 900°C. A few Zn2+ ions entered the matrix of the specimens and increased the coercive field ( E c) and Q m values of the specimens. High-piezoelectric properties of k p=0.37, Q m=755, and ɛ3 T0=327 were obtained from the NKNC ceramics containing 1.0 mol% ZnO sintered at 900°C for 2 h.  相似文献   

13.
High-quality alumina ceramics were fabricated by a hot pressing with MgO and SiO2 as additives using α-Al2O3-seeded nanocrystalline γ-Al2O3 powders as the raw material. Densification behavior, microstructure evolution, and mechanical properties of alumina were investigated from 1250°C to 1450°C. The seeded γ-Al2O3 sintered to 98% relative density at 1300°C. Obvious grain growth was observed at 1400°C and plate-like grains formed at 1450°C. For the 1350°C hot-pressed alumina ceramics, the grain boundary regions were generally clean. Spinel and mullite formed in the triple-grain junction regions. The bending strength and fracture toughness were 565 MPa and 4.5 MPa·m1/2, respectively. For the 1300°C sintered alumina ceramics, the corresponding values were 492 MPa and 4.9 MPa·m1/2.  相似文献   

14.
Pr3+-doped YF3 (orthorhombic), YO0.80F1.40 (orthorhombic), YOF (rhombohedral), and Y2O3 (cubic) films were synthesized on quartz-glass substrates through pyrolysis of a single-source trifluoroacetate precursor at temperatures between 400° and 900°C in air. Phase-selective deposition was achieved by controlling heating temperature and time. YF3, which formed first from the precursor, was transformed to YO0.80F1.40, YOF, and Y2O3. Photoluminescent properties of Pr3+-doped films were examined using ultraviolet excitation. An intense green photoluminescence was observed in the YOF:Pr3+ film, which was deposited at 700°C, through an efficient charge transfer (O2−–Pr3+) excitation.  相似文献   

15.
16.
An extensive X-ray study of CeO2–Nd2O3 solid solutions was performed, and the densities of solid solutions containing various concentrations of NdO1.5 were measured using several techniques. Solid solutions containing 0–80 mol% NdO1.5 were synthesized by coprecipitation from Ce(NO3)3 and Nd(NO3)3 aqueous solutions, and the coprecipitated samples were sintered at 1400°C. A fluorite structure was observed for CeO2–NdO1.5 solid solutions with 0–40 mol% NdO1.5, which changed to a rare earth C-type structure at 45–75 mol% NdO1.5. The change in the lattice parameters of CeO2–NdO1.5 solid solutions, when plotted with respect to the NdO1.5 concentration, showed that the lattice parameters followed Vegard's law in both the fluorite and rare earth C-type regions. The maximum solubility limit for NdO1.5 in CeO2 solid solution was approximately 75 mol%. The relationship between the density and the Nd concentration indicated that the defect structure followed the anion vacancy model over the entire range (0–70 mol% NdO1.5) of solid solution.  相似文献   

17.
The pseudobinary system CoNb2O5–CoTa2O6 was investigated. CoNb2O6 crystallizes in either the columbite or rutile structure, whereas CoTa2O6 assumes only the trirutile structure. In an argon atmosphere at about 1400°C, CoNb2O6 undergoes a phase transition from columbite or rutile. Between 1000° and 1400°C the solubility of CoTa2O6 in CoNb2O6 is about 10 mole %; in the same temperature region the solubility of CoNb2O6 in CoTa2O6 varies from about 40 to 70 mole %. The extensive solubility of CoNb2O6 in CoTa2O6 is explained by the ability of niobium to induce some disorder in the trirutile phase. The columbite to rutile transformation is also discussed on this basis.  相似文献   

18.
A 2.45 GHz microwave-sintered Si3N4–Y2O3–MgO system containing various amounts of ZrO2 secondary additives have been studied with respect to phase transformation and densification behavior. The temperature dependent dielectric properties were measured from 25°C to 1400°C using a conventional cavity perturbation technique. Phase transformation behavior was studied using X-ray diffractometry. Microwave sintered results were compared with those of conventional sintered results. It has been found that α to β phase transformation was completed at a lower temperature in microwave-sintered samples than those of the conventionally sintered samples. Density of the microwave-sintered samples increased up to 2.5 wt% of ZrO2 addition and thereafter it showed a tendency to decrease or remain constant. The decrease in density is attributed to the pore generation caused by decomposition due to the localized over heating.  相似文献   

19.
A fine, uniform A12O3-SiO2 powder was prepared by heterocoagulation of narrow Al2O3 and SiO2 powders. This composite powder was dispersed, compacted, and fired in air at 900° to 1580°C for 1 to 13 h. Full density was achieved at 1550°C with the formation of a mullite phase. Relative densities of 83% and 98% (0.3 μm grain size) were measured for samples sintered at 1200°C for 13 h and at 1400°C for 1 h, respectively.  相似文献   

20.
The electrical conductivity and ion/electron transference numbers in Al3O3 were determined in a sample configuration designed to eliminate influences of surface and gas-phase conduction on the bulk behavior. With decreasing O2 partial pressure over single-crystal Al2O3 at 1000° to 1650°C, the conductivity decreased, then remained constant, and finally increased when strongly reducing atmospheres were attained. The intermediate flat region became dominant at the lower temperatures. The emf measurements showed predominantly ionic conduction in the flat region; the electronic conduction state is exhibited in the branches of both ends. In pure O2 (1 atm) the conductivity above 1400°C was σ≃3×103 exp (–80 kcal/ RT ) Ω−1 cm−1, which corresponds to electronic conductivity. Below 1400°C, the activation energy was <57 kcal, corresponding to an extrinsic ionic condition. Polycrystalline samples of both undoped hot-pressed Al2O3 and MgO-doped Al2O3 showed significantly higher conductivity because of additional electronic conduction in the grain boundaries. The gas-phase conduction above 1200°C increased drastically with decreasing O2 partial pressure (below 10−10 atm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号