共查询到20条相似文献,搜索用时 109 毫秒
1.
经典的Slope One算法采用线性回归模型对目标项目进行预测评分,但在项目评分偏差表构建过程中产生了部分噪声数据,影响了算法的推荐性能。为了解决该问题,建立了一种基于局部近邻Slope One协同过滤推荐算法。算法计算了当前活跃用户针对不同推荐商品的近邻用户集,其邻居用户集根据目标项目的不同而动态变化;根据活跃用户关于不同目标项目的邻居用户数据来进一步优化项目之间的平均偏差,进而产生推荐。对比实验说明,该算法在MovieLens数据集上具有较高推荐精度。 相似文献
2.
3.
不确定近邻的协同过滤推荐算法 总被引:24,自引:0,他引:24
文中围绕传统的协同过滤推荐算法存在的局限性展开研究,提出一种不确定近邻的协同过滤推荐算法UNCF.根据推荐系统应用的实际情况,对于推荐的每一种场景其实都是不可预先确定的,而文中算法基于用户以及产品的相似性计算,自适应地选择预测目标的近邻对象作为推荐群,同时计算推荐群中推荐把握概率较高的信任子群,最后通过不确定近邻的动态度量方法,来对预测结果进行平衡的推荐.通过实验结果表明,该算法可以有效平衡用户群以及产品群推荐结果所带来的不稳定影响,有效缓解用户评分数据稀疏的情况所带来的问题,并在多个实验数据中,提高了推荐系统的预测准确率. 相似文献
4.
针对PPCT动态图编码效率低的特点,提出了一种将PPCT枚举编码和基数k枚举编码进行混合编码的动态图编码方案。在保证其抗攻击力的前提下,为了提高PPCT枚举编码的编码效率,把基数k枚举编码的循环链表指针编码系数的方法运用到PPCT枚举编码中。该编码方案具有PPCT枚举编码的抗攻击能力和基数k枚举编码的编码效率,克服了PPCT动态图编码效率低的缺点。 相似文献
5.
协同过滤推荐系统的近邻选择环节中不仅没有考虑目标项目对用户间相似性计算的影响,而且也未考虑邻居用户对目标用户的推荐贡献能力,导致既降低了相似性计算的准确性,也提高了近邻集合中伪近邻的比例。针对这些问题,提出了一种基于熵优化近邻选择的协同过滤推荐算法。算法首先使用巴氏系数计算项目间相似性,并以此为权重加权计算用户间相似性。其次引入熵描述用户评分分布特性,根据评分分布差异性衡量邻居用户的推荐贡献能力。最后,利用双重准则共同计算推荐权重,并构建近邻集合。实验结果表明该算法能够在不牺牲时间复杂度的条件下准确地选取近邻集合,提升推荐准确度。 相似文献
6.
周涛 《计算机工程与应用》2010,46(26):7-10
粗糙聚类是不确定聚类算法中一种有效的聚类算法,这里通过分析粗糙k-means算法,指出了其中3个参数wl,wu和ε设置时存在的缺点,提出了一种自适应粗糙k-means聚类算法,该算法能进一步优化粗糙k-means的聚类效果,降低对“噪声”的敏感程度,最后通过实验验证了算法的有效性。 相似文献
7.
8.
对粗糙集、Vague集及粗糙Vague集的概念、知识表示方法进行了讨论,描述了粗糙Vague集的相关概念,在研究了粗糙Vague集相似性度量方法的基础上,提出了一种对踌躇度пv(x)k步细化的k步相似度量新方法,并且研究了该方法的相关性质。进一步对k步相似度量在k趋向无穷时求极限,得出粗糙Vague集退化为模糊集的特例情况。 相似文献
9.
随着用户数量和网站提供的服务种类的不断增加,这些网站都面临着怎样更精准的给自己的用户推荐他们可能感兴趣的东西。传统的在用户—项目评分矩阵上计算项目之间相似性的方法不够精确,而且当用户—项目评分矩阵很稀疏的时候误差很大甚至无法处理。文中在项目评分相似性计算中考虑了时间信息,在计算项目相似性中融合了项目评分相似性和经过加权处理的项目属性特征相似性。实验结果表明,该算法较之传统的方法能够较好的应对数据稀疏问题,同时提高了推荐结果的精确度。 相似文献
10.
基于支持向量机与反K近邻的分类算法研究 总被引:1,自引:0,他引:1
针对支持向量机在对样本进行分类时,决策超平面附近的点较易错分的问题,首先将反K近邻法引入分类问题,提出了反K近邻分类算法;然后,将支持向量机(SVM)与反K近邻分类算法(RKNN)相结合,提出了基于支持向量机与反K近邻的分类算法(SVM-RKNN);最后,为了避免单一分类器可能存在的片面性问题,提出了基于SVM-RKNN的多特征融合分类方法。实验结果表明:SVM-RKNN分类算法的分类准确率比SVM方法平均提高了2.13%,而基于SVM-RKNN的多特征融合分类算法的分类准确率分别比SVM和SVM-RKNN算法平均提高了2.54%和0.41%。 相似文献
11.
在商业领域,推荐系统被广泛用于向用户推荐符合其个人偏好的产品、服务或内容。借助这一技术建立图书推荐系统可以有效提高图书馆的服务水平。所提出的图书推荐系统是使用协同过滤技术通过对具有相似阅读习惯读者的借书数据进行偏好评分计算,从而为指定读者推荐符合其偏好的图书列表。为了解决推荐系统中所存在的数据稀疏性、评分的系统偏差以及图书偏好的量化等问题,该研究采用了矩阵分解、在评分中引入偏差值以及使用带时间戳的借阅记录生成偏好量化数值等解决方法。实验结果表明该推荐系统具有较好的准确度。 相似文献
12.
介绍了协同过滤算法,并对算法进行了改进,解决了用户稀疏的情况下传统算法的不足,同时通过引入评分阈值,显著提高了个性化协同过滤算法的推荐精度。 相似文献
13.
14.
为了解决传统的基于用户的协同过滤算法中的数据稀疏性问题,提高推荐的准确率,本文对推荐算法进行了改进并将改进后的算法应用在美食推荐领域。首先,利用均值中心化方法对实验数据进行处理,减少因个人评分习惯差异造成的推荐误差。然后,通过使用改进的空值填补法降低评分矩阵的稀疏性。最后,在计算相似度时引入了遗忘函数和用户间的信任度,进一步提高了推荐系统的准确性。实验表明,本文提出的改进算法比传统算法有更高的准确率,并得出了在推荐过程中考虑用户和项目外的其他因素以及针对不同的数据信息采用不同的算法,都有利于提高推荐准确率的重要结论。 相似文献
15.
16.
多维度自适应的协同过滤推荐算法 总被引:1,自引:0,他引:1
传统的协同过滤推荐算法明显存在的缺点是数据稀疏性导致所求相似性的不准确,影响最终推荐质量.本文围绕其局限性展开研究,提出一种多维度自适应的协同过滤推荐算法,有机结合三种推荐模型——基于用户、基于项目以及基于评论的相似性计算,将观点挖掘技术运用到协同过滤推荐算法中,并通过动态度量方法自动确定三个维度的权重产生最终推荐.实验结果表明,该算法可以有效缓解用户评分数据稀疏带来的不良影响,提高预测准确率和推荐质量. 相似文献
17.
针对协同过滤推荐算法中数据极端稀疏所带来的推荐精度低下的问题,文中提出一种基于情景的协同过滤推荐算法。通过引入项目情景相似度的概念,基于项目情景相似度改进了用户之间相似度的计算公式,并将此方法应用至用户离线聚类过程中,最终利用用户聚类矩阵和用户评分数据产生在线推荐。实验结果表明,该算法能够在数据稀疏的情况下定位目标用户的最近邻,一定程度上缓解数据极端稀疏性引起的问题,并减少系统在线推荐的时间。 相似文献
18.
推荐系统对筛选有效信息和提高信息获取效率具有重大的意义。传统的推荐系统会面临数据稀松和冷启动等问题。利用外部评分和物品内涵知识相结合,提出一种基于循环知识图谱和协同过滤的电影推荐模型——RKGE-CF。在充分考虑物品、用户、评分之间的相关性后,利用基于物品和用户的协同过滤进行Top-K推荐;将物品的外部附加数据和用户偏好数据加入知识图谱,提取实体相互之间的依赖关系,构建用户和物品之间的交互信息,以便揭示实体与关系之间的语义,帮助理解用户兴趣;将多种推荐结果按不同方法融合进行对比;模型训练时使用多组不同的负样本作为对比,以优化模型;最后利用真实电影数Movielens和IMDB映射连接成新数据集进行测试。实验结果证明该模型对于推荐效果的准确率有显著的提升,同时能更好地解释推荐背后的原因。 相似文献
19.
20.
基于影响集的协作过滤推荐算法 总被引:21,自引:0,他引:21
传统的基于用户的协作过滤推荐系统由于使用了基于内存的最近邻查询算法,因此表现出可扩展性差、缺乏稳定性的缺点.针对可扩展性的问题,提出的基于项目的协作过滤算法,仍然不能解决数据稀疏带来的推荐质量下降的问题(稳定性差).从影响集的概念中得到启发,提出一种新的基于项目的协作过滤推荐算法CFBIS(collaborative filtering based on influence sets),利用当前对象的影响集来提高该资源的评价密度,并为这种新的推荐机制定义了计算预测评分的方法.实验结果表明,该算法相对于传统的只基于最近邻产生推荐的项目协作过滤算法而言,可有效缓解由数据集稀疏带来的问题,显著提高推荐系统的推荐质量. 相似文献