共查询到20条相似文献,搜索用时 187 毫秒
1.
《中国钼业》2021,(1)
专利申请号:CN201611011043公开号:CN106340398B申请日:2016.11.17公开日:2019.01.01申请人:西南大学本发明涉及一种超级电容器电极材料镍钴氢氧化物与钼氧化物复合材料的制备方法,其包括如下制备步骤:(1)将碳布或泡沫镍基底依次用去离子水、丙酮、乙醇、去离子水超声洗涤,干燥;(2)将硝酸镍、硝酸钴和钼酸钠溶解于去离子水中,再加入六次甲基四胺和尿素搅拌,混合均匀,形成澄清的混合溶液;(3)将制得的混合溶液移入高压反应釜中,并向混合溶液中加入预处理得到的碳布或泡沫镍基底,进行水热反应;反应结束后,自然冷却至室温;(4)将所得的反应产物用去离子水洗涤,干燥。 相似文献
2.
3.
《有色金属材料与工程》2019,(6)
Ni因其价格低廉和对环境友好,被视为具有发展潜力的超级电容器电极材料之一;且它与其他电极材料复合可以有效阻止团聚反应的发生,能大大改善材料的电化学性能。近年来Ni的(氢)氧化物与碳材料、聚合物等复合制备新的电极材料已经成为储能领域研究的热点。介绍了Ni的化合物作为电极材料储能的机制以及在复合电极材料中的应用,综述了近年来国内外报道的各类镍基复合电极材料的研究进展,并对其今后的发展趋势进行了展望。 相似文献
4.
5.
6.
以NiCl_2·6H_2O和NH_3·H_2O为反应原料,赖氨酸为结构调节剂,采用水热-煅烧的方法制备具有微纳分级结构的NiO中空微球材料。通过扫描电子显微镜、透射电子显微镜和X射线衍射等检测方法对NiO材料的微观结构和物相进行分析。结果表明:三维微纳分级结构NiO中空微球由许多NiO纳米片相互堆叠而成,微球大小比较均匀,分散性良好,颗粒粒径约为2~3μm。NiO纳米片边缘清晰,片长约为400~600 nm,厚度仅为40~50 nm。同时,在溶液反应温度为40℃,赖氨酸添加量为0.6 g,水热时间为6 h的条件下,所制备的微纳分级结构NiO微球分散性好,形貌较完整,且具有中空结构。这种独特的结构使得NiO材料具有较高的孔隙率和比表面积,以及相互贯通的孔道,有利于电解质离子和电子的扩散及迁移。将所制备的NiO材料制成工作电极后,采用三电极体系,在1 A/g的电流密度下比电容可达到1 340 F/g,且循环1 000次后,容量保持率为96.5%,显示出优越的电化学性能。 相似文献
7.
8.
本发明提供一种细晶稀土氧化物掺杂钼合金及其制备方法,以二氧化钼为原料,采用雾化法掺杂稀土氧化物,掺杂后的钼合金粉经过球磨、过筛处理后,在800~1100℃的多段马弗炉中使用氢气进行还原处理,再将还原后的粉体在150~200MPa下冷等静压压制成型,成型后的坯料在中频感应烧结炉中分段烧结,时间16~24h。 相似文献
9.
随着能源消耗的日渐增长,寻找低成本、环保、寿命长的储能设备迫在眉睫.在超级电容器领域,石墨烯电极材料以其高比电容、优异倍率性能、良好导电性等优势而受到广泛关注.对石墨烯材料的制备方法、电化学性能及相关机制做了总结,目的是研究不同结构的石墨烯材料对超级电容器性能的影响,并找到性能较为优异的石墨烯基材料.最后分析了石墨烯基... 相似文献
10.
采用原位生长法, 以硝酸钴和氨水为原料、硝酸铵为生长剂, 制备生长在泡沫镍上的Co (OH)2电极材料, 并在此基础上对其进行镍添加改性, 旨在得到比电容高、循环性能好的Co–Ni氢氧化物电极材料。通过X射线衍射仪、扫描电子显微镜对Co–Ni氢氧化物电极材料进行物相和微观形貌分析; 通过循环伏安、恒流充放电和交流阻抗等方法对Co–Ni氢氧化物电极材料的电化学性能进行分析和表征。结果表明: 镍添加使材料从原有的Co (OH) 2晶相变为Co (OH) 2和Ni (OH) 2双晶相材料, 使原有的簇状结构转变为更利于离子扩散的花状结构, 进而促进材料电化学性能的提高。当Co/Ni摩尔比为3:1时制得的花状Co–Ni氢氧化物电极材料的电化学性能最好, 在5 m V·s-1扫速下的比电容值为3674.7 F·g-1, 在5 A·g-1电流密度下的比电容值为1450.0 F·g-1, 在20 A·g-1电流密度下循环5000次的比电容保持率为77.1%。 相似文献
11.
12.
本发明涉及一种钼基合金及其制备方法,该钼基合金的组分及重量比为:氢化锫、碳、颗粒小于0.6μm以下的碳化钛分别为0.1%-0.8%、0.1%-0.8%、0.4%-2.2%,和颗粒小于40nm以下的稀土氧化物0.5%-2.5%,其余量为钼。将上述组分的物料经均质、压制和烧结工序制成该钼基合金。该钼基合金可强化固溶体,使其形成弥散的碳化物相,提高了固溶体晶体晶格的键合力。 相似文献
13.
14.
15.
16.
17.
18.
19.