首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
合成孔径雷达(SAR)图像舰船目标检测一直受到学者广泛关注,恒虚警率(CFAR)检测算法作为雷达图像经典目标检测算法被广泛应用于SAR图像舰船目标检测中。然而经典CFAR检测性能容易受到相干斑噪声影响,基于滑窗的检测结果对滑窗的尺寸选择非常敏感,难以保证杂波背景中不存在目标像素,并且计算效率较低。针对上述问题,该文提出了一种新的基于超像素无窗快速CFAR的SAR图像舰船目标检测算法。首先,利用基于密度的快速噪声空间聚类(DBSCAN)超像素生成方法生成SAR图像的超像素。在SAR数据服从混合瑞利分布的假设下,定义了超像素相异度。然后利用超像素精确估计每个像素的杂波参数,即使在多目标情况下,也可以克服传统CFAR滑动窗口的缺点。此外,基于SAR图像变异系数,提出了一种基于变异系数的局部超像素对比度来优化CFAR检测,以此消除大量杂波虚警,如陆地区域人造目标。对5幅SAR图像的实验结果表明,与其他方法相比,该文方法对不同场景SAR图像海面舰船目标检测都十分稳健。   相似文献   

2.
超像素分割在图像分割领域以其优异的性能表现被广泛应用,准确性和高效性是评价分割性能的重要指标.简单线性迭代聚类(simple linear iterative clustering,SLIC)方法在光学图像上表现出了优异的性能,在极化合成孔径雷达(synthetic aperture radar,SAR)图像中也被广泛应用,然而SLIC方法中的初始化步骤不能准确地定位类中心,需要多次的迭代纠正误差.改进的分水岭方法(spatial constrained watershed,SCoW)是一种基于梯度阈值区分的简单且高效的分割方法,但是不能直接用于极化SAR图像.本文受SCoW的启发,提出一种对SLIC进行预处理的分割方法,通过横虚警(constant false alarm rate,CFAR)边缘检测器计算得到极化SAR图像的梯度信息,并将梯度信息用于初始化分割.基于两幅实测极化SAR图像,将本文提出方法与其他三种方法对比.实验表明本文方法可以减少整个算法的迭代次数,得到更加符合图像信息、贴合图像边界的分割结果.  相似文献   

3.
SAR图像感兴趣目标区域(Region Of Interest, ROI)的提取是目标识别的基础。该文针对SAR图像中车辆目标ROI提取问题,系统分析了ROI提取过程的关键环节,提出了采用基于有序数据可变索引(Ordered Data Variability Index, ODVI)的自适应CFAR方法实现目标的恒虚警检测,同时对ROI切片计算鉴别特征,并实现序贯鉴别。最后利用X波段SAR图像数据验证了该文的ROI提取技术,给出了鉴别输出的ROI,处理结果显示该文算法能准确提取车辆目标ROI,有效消除虚警。  相似文献   

4.
一种基于变化检测技术的SAR图像舰船目标鉴别方法   总被引:2,自引:0,他引:2       下载免费PDF全文
该文引入变化检测思想,利用SAR图像中海杂波和目标之间的灰度差异,通过对潜在舰船目标切片的目标像素和背景像素进行分离,计算目标像素聚集度(TPAM)特征,实现对高亮像素在图像切片中聚集程度的定量评估,从而鉴别目标切片中是否包含有舰船目标,有效去除杂波虚警。首先,基于感兴趣区域(ROI)切片中心为目标像素及四周为海杂波的合理假设,构建似然比变化检测量获取差异图像;然后,利用KSW熵阈值选择方法实现差异图像中目标像素和海杂波像素的自动分离,生成二值图像;最后,利用切片中心像素为种子点,对二值图像进行区域生长,计算目标像素聚集度特征,并判断目标切片是否包含舰船目标。基于RADARSAT-1 SAR实测数据的实验结果表明,该文方法得到的目标像素聚集度特征计算简单、稳健性好、可区分度高,具有良好的鉴别性能,能够去除大部分海杂波干扰产生的虚警,有效地降低目标检测虚警率。  相似文献   

5.
基于模糊聚类的SAR图像变化检测   总被引:1,自引:0,他引:1  
贾彩杰 《电子科技》2012,25(10):23-25
利用两种模糊聚类算法即模糊C均值聚类(FCM)和Gustafson Kessel聚类(GKC),对SAR图像进行变化检测。差异图是根据不同时相图像的灰度值得到的,为了验证算法的有效性,实验选用两个不同地区的多时相图像,实验结果比较现存的马尔科夫随机场(MRF)和神经网络算法,不但耗用时间短,而且无需变化类和未变化类像素的任何先验分布信息。  相似文献   

6.

针对现有超像素分割方法无法自动确定合适的超像素数目,以及难以有效贴合图像目标边界等问题,该文提出一种新的利用局部信息进行多层级简单线性迭代聚类的图像超像素分割方法。首先,运用基于局部信息的简单线性迭代聚类(LI-SLIC)对原始图像进行超像素初分割,然后,根据超像素的色彩标准差对其进行自适应多层级迭代分割,直至每个超像素块的色彩标准差小于预设阈值,最后,利用相邻超像素间的色彩差异对过分割的超像素进行合并。为验证方法的有效性,该文采用Berkeley, Pascal VOC和3Dircadb公共数据库作为实验数据集,并与其他多种超像素分割方法进行了比较。实验结果表明,该文提出的超像素分割方法能更精确贴合图像目标边界,有效抑制图像过分割和欠分割。

  相似文献   

7.
一种基于聚类的深空红外多目标快速检测算法   总被引:1,自引:1,他引:1  
该文提出一种基于行扫描点线目标聚类合并的快速实时多目标检测算法。该方法首先对原始图像进行自适应阈值分割,然后采用外接矩补形,点线目标提取和聚类合并对二值图像单帧目标进行全视场检测并编号标记,精度达到像素级,避免了帧差法,投影法等传统检测算法带来的漏检。最后应用五点二次滤波预测目标位置,并构造代价函数进行关联匹配完成目标确认,有效解决了检测中目标分裂,交叉,因重合而暂时消失等问题,提高了系统检测能力。在基于SOPC的硬件平台进行验证,实验结果表明该算法能够准确实时地检测深空目标。  相似文献   

8.
SAR图像目标综合检测方法   总被引:5,自引:0,他引:5       下载免费PDF全文
万朋  王建国  黄顺吉 《电子学报》2001,29(3):323-325
基于SAR(合成孔径雷达)图像杂波结构,结合小波变换和自适应维纳滤波提出了一种新的抑制SAR图像相干斑噪声方法,该方法能够较好保留杂波边缘和点目标.分析了抑制SAR图像相干斑噪声后的多分布特性,研究了相应的SAR目标检测,提出了一种新的SAR图像目标检测方法及其实现.实际SAR图像测试结果表明了本文方法的有效性.  相似文献   

9.
基于分水岭-谱聚类的SAR图像分割   总被引:5,自引:2,他引:5  
由于谱聚类是基于图论的、以相似性为基础的聚类方法,需要计算图像中每对像素点之间的相似性.当图像很大时,计算相似性矩阵和求解相应的特征值、特征向量是很困难和耗时的.为此,针对合成孔径雷达(SAR)图像的特点,提出了一个两阶段的图像分割方法,首先采用分水岭算法对图像进行过分割,然后再用改进的谱聚类算法进行聚类.新方法不仅可以减少噪声对分割结果的影响,很好地保持图像边缘,而且对时间要求较高的应用也具有一定的参考价值.为了验证新方法的有效性,将其用于SAR图像分割,取得了较优的分割结果.  相似文献   

10.
针对高分辨率光学遥感图像中人造目标的检测问 题,对传统的相位编组直线段提取算法和k-means 聚类算法了改进,提出了一种k-means聚类和几何特征 相结合的检测方法。根据自然物体和 人造目标在几何外形上表现出的不同特性,首先运用改进的相位编组算法对图像进行快速的 直线段提取; 然后以获取的直线段中心点为处理对象,运用k-means聚类算法 对提取的直线段进行密度聚类;最后,根 据每个类中的直线段数目和构成的几何基元情况,进行人造目标的判定。实验结果表明,本 文算法对遥感 图像中的房屋、汽车、船舰和飞机跑道等多类人造目标可达到90%以 上的检测精度,并具有较高的检测速度,对于一幅512pixel ×512pixel的图像,整个检测过程在100ms 以内。  相似文献   

11.
在一定条件下,遥感图像上可以观测到舰船的尾迹或自然界的内波现象。目前对舰船尾迹的检测多集中在线性尾迹的检测上,该文提出一种基于生理视觉的静态边界轮廓系统和移动窗口形态滤波非线性分布目标检测方法,并且转换成二值图像后,运用二值形态滤波对线状要素进行分类,将非线性特征进行区分,以便进一步的处理。文中仿真和实际SAR图像试验的结果表明该算法是有效的。  相似文献   

12.
提出了一种递增结构能量参数的Markov随机场模型的合成孔径雷达图像目标检测算法,利用模拟退火优化方法,获得最大后验概率准则下的目标检测结果。实验结果表明,该算法不仅能有效减少斑点噪声及背景杂波的影响,而且还可以排除具有较强回波的角反射器的干扰。  相似文献   

13.
基于稀疏先验的SAR图像目标方位角稳健估计方法   总被引:2,自引:0,他引:2  
稳健的高精度目标方位角估计能有效提高SAR ATR的计算效率和识别性能.SAR图像中目标的近雷达主导边界包含较为精确的目标方位角信息,可用于目标方位角估计.由于目标电磁散射特性以及SAR图像斑点噪声的影响,提取的目标近雷达主导边界很不规则,存在"野值"点.本文根据"野值"点稀疏分布的特性,利用最大后验原理提出了一种稳健的方位角估计方法.该方法能够有效检测和剔除主导边界中的"野值",从而提高目标方位角估计的精度和稳健性.针对仅利用距离主导边界估计带来的目标垂直与水平方位的模糊性,基于分割图像中目标区域长宽比特征提出了一种解模糊的新方法.MSTAR实测数据的实验结果表明提出的算法具有较高的精度与稳健性.  相似文献   

14.
《无线电通信技术》2019,(2):214-220
无人机合成孔径雷达(Synthetic Aperture Radar,SAR)图像在目标检测过程中存在噪点丰富、成像相对模糊等特点,容易造成目标初检测虚警较多。特征提取和虚警去除是实现SAR图像目标准确检测的重要途径。针对目标特征提取及虚警去除,提出了一种面向机载SAR图像的目标检测算法。该算法首先进行目标初检测,再基于特征,使用球面构造神经网络模型去除虚警,实现目标的精确检测。最后,基于实拍遥感SAR影像验证了算法的有效性。  相似文献   

15.
准确分割出SAR图像舰船成像区域是舰船目标几何参数提取、目标分类识别的基础。受SAR成像机理影响,图像不可避免地存在旁瓣效应,严重影响目标特征提取精度。提出一种舰船目标去旁瓣方法:首先确定目标区域及强散射区域最小外接矩形,在两个外接矩形区域内,根据旁瓣自身特征进行统计分析,删除疑似旁瓣区域,最后对剩余区域重新计算区域参数,获取更准确成像区域。通过对高分辨率机载SAR图像实验验证,该算法能有效去除旁瓣对SAR舰船目标影响,更精确分割出目标真实成像区域。  相似文献   

16.
王彦平  张艺博  李洋  林赟 《信号处理》2019,35(5):802-808
合成孔径雷达(synthetic aperture radar,SAR)图像解译是一项重大的科学应用挑战,SAR图像目标识别已成为该领域的主要研究方向之一。针对SAR图像识别算法训练参数较多的问题,本文提出一种二维主成分分析(two-dimensional principal component analysis,2DPCA)与L2正则化约束的随机配置网络(stochastic configuration network,SCN)进行集成学习的SAR图像目标识别方法。2DPCA不仅能够有效地提取出目标的特征信息而且通过稀疏表征方式降低数据量,SCN正则化算法参数较少且可以有效避免网络过拟合问题,提高网络的识别率。我们将提出的方法在MSTAR (moving and stationary target acquisition and recognition)数据集上进行实验,结果表明该方法相对传统方法具有更高的识别率。   相似文献   

17.
一种新的极化SAR图像目标CFAR检测方法   总被引:1,自引:0,他引:1  
该文提出了一种新的极化SAR图像目标CFAR检测算法。首先,在乘积模型框架下,引入具有均匀度变化下广泛杂波区域建模能力的逆Gamma分布,推导出了极化匹配滤波(PMF)检测量的分布模型P-G0分布。进而,利用基于Mellin变换的对数累积量导出了P-G0分布的参数估计器,保证了PMF检测量的精确建模。最后,推导出P-G0分布的CFAR检测阈值求解公式,以此设计了新的CFAR检测算法。利用RADARSAT-2极化SAR数据的实验结果表明了P-G0分布对不同均匀度的地物都具有良好的拟合性能,所提检测算法能够实现均匀度变化较大环境下目标的准确、自动检测。  相似文献   

18.
SAR图像港口区域舰船检测新方法   总被引:1,自引:0,他引:1  
SAR图像港口内舰船检测是SAR图像海洋应用研究的重要方面。快速、准确地检测港口内舰船将大大提高SAR图像的自动解译能力。该文通过分析港口内舰船停靠特点,提出了一种新的SAR图像港口内舰船检测方法。首先基于港口岸线获取港口沿岸区域SAR图像,然后详细分析了港口沿岸区域SAR图像的杂波统计特性,进而采用基于G0分布的CFAR(Constant False Alarm Rate)检测算法完成了港口内舰船检测。实验结果表明,新方法能有效地将不同形状的港口区域的舰船与绝大部分陆地分开,具有港口内舰船检测率高、虚警率低等特点。  相似文献   

19.
合成孔径雷达动目标成像的一种新方法   总被引:1,自引:0,他引:1  
本文在分析动目标SAR回波频谱特性的基础上,提出了一种新的动目标成像方法,该方法基于时间-频率联合分析法,利用其对参数的精确估计和动目标检测区的高信噪比,得到运动目标的精细成像,实现SAR动目标成像模式对常规模式的兼容,计算机模拟对比了几种方法的处理性能,验证了新方法的有效性。  相似文献   

20.
SAR图像人造目标检测研究   总被引:1,自引:0,他引:1  
在合成孔径雷达(SAR)自动目标识别中,人造目标的检测至关重要。该文根据SAR图像的特点,对图像中的人造目标进行了检测。首先采用自适应小波滤波方法对图像进行滤波,在保留图像细节的前提下有效地去除了图像中的乘性噪声,使后续的检测变得相对容易。然后采用基于自适应遗传算法的C-划分二维模糊熵算法对图像进行分割。实验结果表明,该文方法能够有效地检测出图像中的人造目标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号