首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文以研究区山西组煤层为例,利用压汞和低温液氮吸附等实验技术,详细剖析了煤储层孔裂隙特征,在此基础之上,深入探讨了煤阶对储层物性的影响。研究表明,鄂尔多斯盆地东缘山西组煤中孔隙以微小孔为主,有利于煤层气的吸附储集,其次发育大孔,中孔最不发育,而煤中吸附孔隙主要以微孔和小孔为主,不同地区孔径分布差异较大;研究区煤层孔隙度较低,为2.7%~7.9%之间,随着煤阶增高,孔隙度呈现"减小~增大~减小"的波状变化;随着煤阶增高,吸附孔隙孔径增大,相应的BET比表面、BJH总孔体积减小,随着煤化作用进一步增强,微孔增多,两者出现一定上升趋势。  相似文献   

2.
不同煤阶煤孔隙分布特征及其对煤层气开发的影响   总被引:1,自引:0,他引:1  
为了查明高、低煤阶煤储层孔隙分布差异性对煤层气富集与渗透运移的影响,根据高、低煤阶煤岩样品的压汞、平衡水等温吸附试验结果,分析了高、低煤阶煤孔隙发育特征,对比了高、低煤阶煤孔隙体积分形差异.结果表明:高煤阶煤孔隙度低、渗流孔含量小、“墨水瓶”型的半封闭孔发育导致孔隙连通性降低、渗流能力差;微孔含量高、水分含量低、吸附能力强,有利于煤层气富集.低煤阶煤孔隙度大,大、中、过渡孔比孔容均较大,孔隙连通性好,渗流能力强;比表面积小、水分含量高,致使吸附能力低下.高煤阶储层煤层气开发应提高渗透性而低煤阶煤层气开发则应首选优势富气区.  相似文献   

3.
文章以平煤十二矿煤样为例,分别进行了压汞实验和等温吸附—解吸实验,从构造煤的孔隙结构特征及构造煤对煤层气吸附—解吸的影响来研究十二矿构造煤煤层气特征。本次研究结果如下:①构造煤孔隙结构多以小孔和微孔为主,有利于煤层气的吸附;②煤体结构破坏越严重,对煤层气的吸附越弱;③常温下,煤层气吸附—解吸可逆。研究结果表明平煤十二矿有利于煤层气的开发。  相似文献   

4.
为了研究黄陵矿区2~#煤层煤岩孔隙特征,采集了黄陵矿区二号煤矿侏罗系延安组2~#煤层样品,通过肉眼挑选出宏观煤岩组分中的镜煤和暗煤,分别进行压汞和低温液氮吸附实验。结果表明,黄陵矿区2~#煤层镜煤主要以小孔和微孔为主,中孔次之;2~#煤层暗煤主要以中孔、小孔为主,微孔次之。孔隙特性有利于煤层气资源的勘探开发。  相似文献   

5.
《煤矿安全》2021,52(2):7-12
以二连盆地群霍林河盆地和白音华盆地低煤阶煤储层为研究对象,通过对煤储层物性特征、压汞曲线类型、孔径分布特征、孔隙结构类型划分的分析,研究低煤阶煤储层孔隙结构对煤层气吸附解吸的影响。结果表明:二连盆地群低煤阶煤储层孔隙系统发育良好,孔隙度较大,孔隙度Ⅳ煤组ⅢA煤3-1煤;孔隙结构以小微孔、大孔为主,孔径小于100 nm的小微孔和孔径大于1 000 nm的大孔对孔容贡献最大;基于孔隙孔径分布比例及孔径对煤层气储集和渗流的作用,把研究区孔隙结构类型划分为ⅡC封闭吸附型、ⅡO开放吸附型、ⅠC封闭渗流型、ⅠO开放渗流型4类,其中ⅡO开放吸附型最有利于煤层气的富集和产出;将霍林河盆地Ⅳ煤组、ⅢA煤储层和白音华盆地3-1煤储层相比较,ⅢA煤孔隙结构最有利于煤层气储集和开发。  相似文献   

6.
利用压汞试验和低温氮吸附试验,研究了黔西月亮田矿区YV-1井6个主要煤层煤样的孔隙特征。压汞试验结果表明:该区煤储层孔容和孔隙度均较小,以吸附孔隙为主,具有微孔和小孔发育、大孔较发育、中孔最不发育的双峰结构孔隙特征;各煤层间不同类型孔隙孔容含量及压汞曲线形态相近,渗流孔隙多为具备一定连通能力的开放孔。低温氮吸附试验表明:煤样比表面积较大,有利于煤层气的聚集,但吸附孔隙中存在较多的一端封闭的不透气性孔和墨水瓶状孔,吸附孔之间的连通性较差,不利于煤层气的解吸和开发。  相似文献   

7.
通过压汞和低温氮等温实验,发现贵州省中岭-坪山区块煤储层孔隙系统发育有以下共同点:孔隙度相对较高,孔隙结构以过渡孔、微孔(压汞测试),微小孔、超微孔(液氮测试)为主,中孔次之,大孔不发育,即吸附孔占绝对优势,约占总孔隙的79%;孔隙类型多以开放透气性孔为主,含有极少量"墨水瓶"孔,孔隙为细喉型,渗流孔与吸附孔之间连通性较差,该区储层对煤层气聚集非常有利,但对煤层气的解吸和开发较为不利。  相似文献   

8.
为分析沁水盆地煤样孔隙结构以及对吸附CH_4和CO_2两种气体的影响,选取晋煤赵庄矿、潞安常村矿两地煤样,利用压汞法与低温氮吸附实验研究分析煤体孔裂隙结构特点。采用HCA1型高压容量装置研究高阶煤吸附CH_4与CO_2气体特性。结果表明:压汞实验常村煤样压退汞"滞后环"大于赵庄煤样,表明常村煤样具有大量开放性孔隙;低温氮吸附曲线显示两种煤样比表面积与孔隙体积主要集中在2~200 nm孔径,赵庄煤样与常村煤样微小孔所占比例较大,均较易存储气体;高压容量法测量煤样吸附CH_4、CO_2气体实验表明,吸附量随温度与含水率的升高而降低,且煤样孔裂隙越发育,含水率与温度对吸附的影响程度越高。  相似文献   

9.
为了研究合阳矿区煤体的孔隙结构对瓦斯吸附-渗流特性的影响,采用低温液氮吸附实验、压汞实验及扫描电镜实验相结合的方法测试了该矿区原生结构煤和软分层煤全孔径孔隙结构特征。结果表明:低温液氮吸附实验得出软分层煤样比原生结构煤样脱附曲线的拐点更加明显,软分层煤样含有更多的狭缝平板孔和墨水瓶孔孔隙。压汞实验测得软分层煤样总孔容是原生结构煤样总孔容的2倍多,应力破坏作用使得软分层煤样中孔、小孔及微孔孔容增大,而大孔孔容减小。扫描电镜实验显示软分层煤的储层物性发生了改变、惰质组破裂产生角砾且孔隙表面有多个气孔密集发育。通过分析得出,合阳矿区煤体孔隙结构中多以微孔和小孔为主,利于煤层瓦斯吸附而不利于渗流扩散。  相似文献   

10.
李阳  张玉贵  张浪  侯金玲 《煤炭学报》2019,44(4):1188-1196
我国煤层受多期次构造运动影响构造煤普遍发育,构造煤孔隙大小分布尺度较广(毫米~纳米级),孔隙结构较为复杂。不同尺度的孔隙结构控制着煤层气的吸附-解吸(孔隙表面)、扩散(纳米级孔隙)与渗流(微米~毫米级孔隙)等过程,是影响煤层气储存与运移的重要因素。为研究构造煤不同尺度孔隙结构的分布特征与演化规律,在潞安矿区采集4种破坏类型煤样,利用压汞法、低温N_2吸附法及CO_2吸附法分别测试了煤样的孔隙分布特征,对比分析了各测试方法的优势孔径段,提出利用CO_2吸附法表征构造煤微孔(2 nm)、低温N_2吸附法表征介孔(2~50 nm)、压汞法表征大孔结构(50 nm)的孔隙结构多尺度联合表征方法。实验结果表明所采煤样的孔容和孔比表面积均主要分布在微孔阶段,在0. 6 nm左右时的孔隙孔容量和孔比表面积达到最大,其中微孔容占总孔容的70%以上,微孔孔比表面积占总孔比表面积的99%以上,煤中孔容和孔比表面积分布存在微孔大孔介孔的规律。分析构造煤孔隙特征与煤体破坏类型的关系,随煤破坏程度增加,孔容和孔比表面积逐渐增高,大孔孔容比及介孔孔容比逐渐增大,微孔孔容比逐渐减小;孔容增幅主要体现在大孔阶段,比表面积增幅则主要体现在微孔阶段。其中大孔演化主要受控于角砾孔、碎粒孔及摩擦孔等外生孔,介孔演化受控于煤的大分子堆叠结构及分子间距,微孔演化主要受控于煤中芳香层片大小及排列方式。  相似文献   

11.
采集山阳井田5#原生结构煤与粉煤样品,分别进行扫描电镜、压汞实验、低温液氮吸附实验,对2种煤的孔隙特征进行对比研究。研究表明:中孔孔容比增长最快、小孔次之,微孔孔容比减小;微孔比表面积比增加,小孔和中孔比表面积比减小,有利于煤层气的吸附与储存;构造作用破坏了小孔与中孔的半开放性,使其孔结构变为开放性孔,同时也使一部分孔封闭成为"死孔隙",增加了孔隙结构的复杂性,但粉煤显微构造发育,附加微裂隙多,气体通道连通性强,同时变质气孔发育,导致渗流孔隙显著恢复,一定程度上提高煤储层的透气性,改善煤层孔隙的连通性。  相似文献   

12.
煤储层孔隙系统发育特征与煤层气可采性研究   总被引:15,自引:0,他引:15  
借助干低温氮等温吸附试验和压汞孔隙分析,研究了河南煤田主要矿区煤储层孔隙系统发育特征。研究发现河南煤储层孔隙系统具有如下特征:①煤储层的孔比表面及总孔体积均较大;②压汞孔隙度较大,孔隙结构以吸附孔占绝对优势,约占总孔隙含量的78%;③孔隙类型主要为细孔细喉型,渗流孔内部的连通性较好但渗流孔和吸附孔之间的连通性较差;④研究区的这种孔隙系统对煤层气的储集非常有利,但对煤层气的解吸和开发较为不利。  相似文献   

13.
查明煤、页岩和砂岩孔隙结构差异性,对煤层气、页岩气和致密砂岩气的开发具有重要意义。采集煤、页岩和砂岩样品,利用压汞法、低温氮气吸附法、低温二氧化碳吸附法测试样品的孔隙结构,根据各测试方法的特点,提出了利用低温二氧化碳吸附法、低温氮气吸附法、和压汞法分别测试表征微孔(<2 nm)、介孔(2~50 nm)和大孔(>50 nm)的全孔径段表征方法,并进行了不同样品的甲烷等温吸附试验,分析孔隙结构对甲烷吸附的影响。试验结果表明:(1)所测样品中,煤中主要发育狭缝形孔隙,页岩和砂岩中主要发育墨水瓶形孔。(2)煤、页岩和砂岩孔隙结构具有较大的差异性,煤微孔发育程度远远大于页岩和砂岩。煤中微孔为煤提供了大部分的孔容和比表面积,其中微孔孔容占总孔容的60%以上,微孔比表面积占总比表面积的95%以上;页岩和砂岩的孔容主要有介孔提供,介孔孔容占到总孔容的65%以上,比表面积由微孔提供,微孔比表面积占到总比表面积的61%以上。(3)不同样品对甲烷吸附能力顺序依次为煤>页岩>砂岩,对甲烷的吸附主要受控于孔比表面积,微孔为煤对甲烷的吸附提供了更多的空间和吸附点位,所以煤对甲烷吸附能力远远...  相似文献   

14.
沁水盆地高家庄区块煤储层的孔隙特征   总被引:2,自引:0,他引:2  
基于煤的孔隙特征在煤层气生产中的重要性,采用了压汞试验和低温氮吸附试验对沁水盆地高家庄区块煤层煤样进行了研究.压汞试验结果表明:该区煤储层具有小孔发育,大孔和微孔较发育,中孔最不发育的双峰结构孔隙特征;该区各煤样中的微孔孔容含量相近,变化不大;在各样中小孔孔容不仅含量最多,而且含量也相近;中孔孔容在各样中含量最少,且差异最大,大孔孔容在各样中含量差异也较大,但总孔容含量差异不是很大.低温氮吸附试验表明:煤样微孔比表面积差异巨大,最大差异达到6.3倍,各煤样中的小孔比表面积差异也较大,反映出各煤样吸附能力差异较大.  相似文献   

15.
张攀攀  郭红光  段凯鑫  陈超 《煤矿安全》2020,51(10):213-217
为研究细菌厌氧降解对烟煤孔隙及分形特征的影响,通过高压压汞和低温液氮吸附对烟煤孔隙发育变化进行表征,分别利用Menger模型和FHH模型进行分形特征分析。结果表明:细菌厌氧降解后,一方面降解残煤微孔、过渡孔以及中孔孔容降低,比表面积降低更为显著,但同时也发现大孔孔容增加;另一方面降解残煤分形维数明显降低,表面粗糙程度降低,孔隙发育趋于简单;说明细菌厌氧降解后烟煤对煤层气吸附能力降低,而渗流能力部分增加。  相似文献   

16.
为查明六盘水煤田杨梅树向斜上二叠统主要煤层孔隙结构特征,对其进行系统采样,基于压汞、低温液氮吸附试验分析了煤层孔隙发育特征及影响因素,并初步优选有利层段。结果表明:压汞测试各煤层以小孔、微孔为主,且微孔比表面积占绝对优势;低温液氮测试多数煤层以小孔、中孔为主,比表面积占比以微孔、小孔最大;压汞曲线和吸附回线均可划分为3种类型,分别代表一定的孔隙形态和连通性;大致以镜质体反射率Ro,max=1.65%为界,压汞测得孔容和比表面积随煤级先升后降,与无机组分和干燥基灰分含量呈负相关,而Barrett-Joyner-Halenda(BJH)孔容和Branauer-EmmettTeller(BET)比表面积与各影响因素的关系呈正相关,2种试验结果与镜质组含量关系均不明显。经对比分析认为5-2、5-3、13-1、33、34号煤层具有煤层气开发的孔隙条件。  相似文献   

17.
我国是煤炭资源大国,煤层气储量规模相当可观,但煤储层又具有低孔、低渗的不足,照搬国外或常规石油天然气的开采程序和方法已被证实是走不通的。应结合实际,根据不同地质条件、不同煤阶的开采程序,进行孔隙特征研究。煤孔隙特征、连通性和吸附能力对煤层气开采影响尤为重要,为研究煤孔隙结构特征随煤变质程度的变化关系及其吸附能力的响应特点,采取不同地区不同变质程度煤样,进行压汞测试和等温吸附实验。实验结果表明,煤孔隙度和平均孔径均随变质程度增加呈现降低—升高—降低的趋势;煤中孔隙连通性随煤变质程度增加逐渐变差;随煤变质程度增加,其最大吸附能力也呈现降低—升高—降低的总体趋势。  相似文献   

18.
基于低温氮吸附法和压汞法的煤样孔隙研究   总被引:2,自引:0,他引:2  
为了研究无烟煤的孔隙结构特征,采用压汞法和低温氮吸附法对寺河矿煤样进行孔隙特征研究,结果表明该煤样的低温氮吸附等温线接近Ⅰ型,煤中的微孔尤其是小于2 nm的孔构成煤层瓦斯的吸附空间;压汞曲线没有滞后环,多分布圆柱形孔和Ⅴ形孔,大孔、可见孔和裂隙比较发育,构成煤的渗透容积,有利于瓦斯流动,从而有利于瓦斯抽采。低温氮吸附法测试煤的比表面积比较优越,而压汞法测试煤的孔体积分布比较准确,因此将2种方法结合使用,可以更全面地分析无烟煤的孔隙结构。  相似文献   

19.
为了研究脉动水力压裂煤层微观结构变化,对取自杨柳矿、顾桥矿和丁集矿的煤样进行脉动水力压裂实验室实验,通过压汞实验和CO_2气体吸附测试分析原煤样和水力压裂作用下煤样孔隙特征变化规律。结果表明:原煤大孔隙阶段的孔隙连通性明显优于中孔隙阶段;煤体孔隙度、孔隙总体积、总表面积和微孔比例随着煤阶的升高而增加,中孔比例随着煤阶的升高而减小,大孔比例则随着煤阶的增加呈"减少-增加"趋势。脉动水力压裂作用后,孔隙度明显增加,而水分对孔隙连通性影响较小。脉动水力压裂使煤样孔隙总表面积、微孔体积和微孔比例减小,总孔隙体积、中孔比例、大孔体积和大孔比例增大。  相似文献   

20.
为了研究煤矿井下压注酸化增透措施中添加表面活性剂对煤体酸化增透的强化作用,使用水、乙酸、添加聚丙烯酰胺的乙酸对高变质煤煤样进行实验,采用压汞法、扫描电镜、低温N2吸附法对煤孔隙及表面特征进行表征.结果表明:原煤微孔和过渡孔体积占比56.36%,水、乙酸、乙酸中添加聚丙烯酰胺处理后,微孔和过渡孔体积占比为58.07%、3...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号