首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we introduce a new and novel method for improving the coupling between photovoltaic IR detectors and CCD signal processors. This new coupling scheme, buffered direct injection (BDI), is a method for improving the direct injection of a signal current into a CCD. The buffered direct injection structure is formed by incorporating a simple amplifier into the conventional direct injection structure. The new structure formed is amenable to LSI technology and offers significant improvements over conventional injection. Improvements in noise, injection efficiency, injection bandwidth and dc offset realized by the BDI approach over conventional coupling structures (e.g., direct injection) are discussed. Experimental evidence is presented to corroborate the analysis.  相似文献   

2.
Buffered direct injection of photocurrents into charge-coupled devices   总被引:6,自引:0,他引:6  
In this paper we introduce a new and novel method for improving the coupling between photovoltaic IR detectors and CCD signal processors. This new coupling scheme, buffered direct injection (BDI), is a method for improving the direct injection of a signal current into a CCD. The buffered direct injection structure is formed by incorporating a simple amplifier into the conventional direct injection structure. The new structure formed is amenable to LSI technology and offers significant improvements over conventional injection. Improvements in noise, injection efficiency, injection bandwidth and dc offset realized by the BDI approach over conventional coupling structures (e.g., direct injection) are discussed. Experimental evidence is presented to corroborate the analysis.  相似文献   

3.
Monolithic integration method has been demonstrated to increase the fill factor of the infrared focal plane arrays (IRFPA). Which is consists of 256×256 Pt-Si schottky barrier charge coupled devices(CCD) operation in 3-5μm IR region. The relative silicon 256×256 element diffractive microlens arrays have been fabricated on the back side of the substrate of the IRFPA using binary optics technology. The aligning process between IRFPA and microlens arrays on each side of the substrate has been completed by IR mask aligner. The testing results show that the imaging quality is very good and the average optical response of the IR FPA is increased by a factor of 3.0, which is improved by about 25% compared with the hybrid integration method in the previous work.  相似文献   

4.
Monolithically integrated optoelectronic circuits combine optical devices such as light sources (injection lasers and light emitting diodes) and optical detectors with solid-state semiconductor devices such as field effect transistors, bipolar transistors, and others on a single semiconductor crystal. Here we review some of the integrated circuits that have been realized and discuss the laser structures suited for integration with emphasis on the InGaAsP/InP material system. Some results of high frequency modulation and performance of integrated devices are discussed.  相似文献   

5.
Fundamental physics of infrared detector materials   总被引:3,自引:0,他引:3  
The fundamental parameters of IR photon detection are discussed relevant to the meaningful comparison of a wide range of proposed IR detecting materials systems. The thermal generation rate of the IR material is seen to be the key parameter that enables this comparison. The simple materials physics of 1) intrinsic direct bandgap semiconductors; 2) extrinsic semiconductors; 3) quantum well devices, including types I, II, and III superlattices; 4) Si Schottky barriers; and 5) high temperature superconductors, will be examined with regard to the potential performance of these materials as IR detectors, utilizing the thermal generation rate as a differentiator. The possibility of room temperature photon detection over the whole IR spectral range is discussed, and comparisons made with uncooled thermal detection.  相似文献   

6.
Light depended resistors (LDR) or photoresistors are semiconductor devices that are changing resistance under illumination. These devices have many applications in industrial controls: item counters, presence and proximity sensors, flame detectors, photometric devices, etc. If the light falling on the device has energy which is greater than the bandgap of the semiconductor, photons absorbed by the semiconductor excite electron-hole pairs which result in lowering the resistance of the semiconductor. Generally, these devices are made of semiconductors such as CdS or CdSe using a thin film technology, since they have traps and misfits in their atomic structure, leading to high dark current and noise.In this work, we describe a novel approach for a novel family of high sensitive light detectors made of single-crystalline silicon. Basic sensor was built in a flat shape providing lateral electrical transport of excited charged carriers. Simple laboratory methods were used to diffuse impurities on both sides of the sensor. The sample shows high sensitivity due to light intensity variation from dark to strong light (∼96,000 lx). A 30 times variation in the sample resistance was obtained.  相似文献   

7.
讨论对有源相控阵雷达和T/R组件的一些新要求。宽禁带半导体材料与器件的主要性能与特点在文中作了简要介绍。宽禁带半导体器件在有源相控阵雷达中的潜在应用在文中也进行了讨论。  相似文献   

8.
While growth of wide bandgap semiconductor materials on crystalline oxides (sapphire, lithium gallate, lithium aluminate, zinc oxide and others) has become routine, growth of crystalline oxides on wide bandgap materials remains challenging and minimally explored. The potential payoff in terms of enhanced device performance, increased functionality and reliability warrants examining this option. This presentation aims at targeting key areas, where crystalline oxides could improve wide bandgap semiconductor device performance. Some of these include the use of ferroelectric oxides for power switching applications, oxides with anisotropic dielectric constants for high voltage termination and oxides with large electric flux density near breakdown. Unique polarization engineered structures are described that are enabled by using lithographically defined poled regions in a ferroelectric substrate. The desired crystalline oxide properties, potential implementation challenges and potential pitfalls will be discussed.  相似文献   

9.
红外CCD信号处理电路的设计   总被引:6,自引:1,他引:5  
由于红外CCD的输出为高背景、宽动态范围的信号,所以在该信号的处理电路中,去除直流高背景和自动增益对于滤除背景噪声、提取目标信号必不可少.通过分析红外CCD信号处理电路的设计要求,介绍了应用于该信号处理的几种常用电路的设计方法.最后,着重阐述了基于CPLD(复杂可编程逻辑器件)和VSP3010的CCD信号处理电路的一体化设计方法.  相似文献   

10.
三代半导体功率器件的特点与应用分析   总被引:2,自引:1,他引:1  
以S i双极型功率晶体管为代表的第一代半导体功率器件和以GaAs场效应晶体管为代表的第二代半导体功率器件为雷达发射机的大规模固态化和可靠性提高做出了贡献。近年来以S iC场效应功率晶体管和GaN高电子迁移率功率晶体管为代表的第三代半导体--宽禁带半导体功率器件具有击穿电压高、功率密度高、输出功率高、工作效率高、工作频率高、瞬时带宽宽、适合在高温环境下工作和抗辐射能力强等优点。人们寄希望于宽禁带半导体功率器件来解决第一代、第二代功率器件的输出功率低、效率低和工作频率有局限性以至于无法满足现代雷达、电子对抗和通信等电子装备需求等方面的问题。文中简要介绍了半导体功率器件的发展背景、发展过程、分类、特点、应用、主要性能参数和几种常用的半导体功率器件;重点叙述了宽禁带半导体功率器件的特点、优势、研究进展和工程应用;对宽禁带半导体功率器件在新一代雷达中的应用前景和要求进行了探讨。  相似文献   

11.
Microlens array is an important optical element to improve the photosensitivity of charge-coupled device (CCD). In this paper, a monolithic integration technology between microlens and 528 × 528 element PtSi Schottky-barrier infrared charge-coupled device (IRCCD) with a pixel size of 30μm × 30μm has been developed. The microlens array with low sag and long focal length is designed based on geometrical optics theory. It is directly formed on the back side of the substrate in IRCCD chip using successive photolithography and A+ ion beam etching (IBE) technology. The microlens array is characterized by both surface stylus and point spread function (PSF). The experiment results of integration device between IRCCD and microlens array indicate that the optical signal response is improved obviously and a responsivity increase by a factor of 1.8 in the operation band.  相似文献   

12.
Conventional silicon based infrared (IR) detector arrays consist of separate Schottky barrier detectors connected via transfer gates to MOS type charge coupled device (CCD) read-out shift registers. A novel IR imaging array is described where Scottky silicide elements are used exclusively both as IR detectors as well as the silicide gates of Schottky CCD read-out shift registers. Advantages of the novel structure are a high packing density of IR detectors with high fill factor, simplicity of the device layout and possible high fabrication yield.  相似文献   

13.
Heterojunction IMPATT diodes make it possible to produce new high conversion efficiency devices, combining a low bandgap semiconductor for the avalanche zone with a large bandgap material for the drift region. In this study, the heterojunction GaInAs/InP which seems particularly attractive is used in various structures. The theoretical predictions of performances are determined by a computer simulation which takes into account the main limitation effects of IMPATT diodes and the influence of particular physical phenomena due to the use of heterojunctions and semiconductors, mainly the influence of injection currents. Potential performances of the proposed structure appear very attractive especially in the millimeter-wave range using a MITATT mode (Mixed-Tunneling-Avalanche-Transit-Time) by combining tunneling current and avalanche multiplication injections.  相似文献   

14.
A semiconductor absorber with a single bandgap is unable to convert broadband sunlight into electricity efficiently. Photons with energy lower than the bandgap are not absorbed, whereas those with energy far higher than the bandgap lose energy via thermalization. In this Article, we demonstrate an approach to mitigate these losses via a thin, efficient broadband diffractive micro‐structured optic that not only spectrally separates incident light but also concentrates it onto multiple laterally separated single‐junction semiconductor absorbers. A fully integrated optoelectronic device model was applied in conjunction with a nonlinear optimization algorithm to design the optic. An experimental demonstration is presented for a dual‐bandgap design using GaInP and GaAs solar cells, where a 20% increase in the total electric power is measured compared with the same cells without the diffractive optic. Finally, we demonstrate that this framework of broadband diffractive optics allows us to independently design for the number of spectral bands and geometric concentration, thereby enabling a new class of multi‐bandgap photovoltaic devices with ultra‐high energy conversion efficiencies. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Linlin Su  Dong Zhou  Hai Lu  Rong Zhang  Youdou Zheng 《半导体学报》2019,40(12):121802-121802-11
4H-SiC single photon counting avalanche photodiodes (SPADs) are prior devices for weak ultraviolet (UV) signal detection with the advantages of small size, low leakage current, high avalanche multiplication gain, and high quantum efficiency, which benefit from the large bandgap energy, high carrier drift velocity and excellent physical stability of 4H-SiC semiconductor material. UV detectors are widely used in many key applications, such as missile plume detection, corona discharge, UV astronomy, and biological and chemical agent detection. In this paper, we will describe basic concepts and review recent results on device design, process development, and basic characterizations of 4H-SiC avalanche photodiodes. Several promising device structures and uniformity of avalanche multiplication are discussed, which are important for achieving high performance of 4H-SiC UV SPADs.  相似文献   

16.
《Solid-state electronics》1987,30(7):723-728
An accurate analytic evaluation of emitter injection into an arbitrarily doped emitter (including a polysilicon-contacted emitter) is presented taking into account position-dependent quantities such as bandgap narrowing, Auger recombination and mobility. Two newly defined dimensionless parameters are introduced that are very useful for emitter design. These parameters are proposed to replace the conventional emitter Gummel number which becomes less useful when appreciable recombination takes place in the emitter. Universal emitter design curves are presented for devices made in silicon, GaAs and InGaAsP or in any other semiconductor for which a newly introduced lifetime model holds good. Numerical simulations show the accuracy and usefulness of the analytical model developed.  相似文献   

17.
Emerging gallium nitride based devices   总被引:8,自引:0,他引:8  
Wide bandgap GaN has long been sought for its applications to blue and UV emitters and high temperature/high power electronic devices. Recent introduction of commercial blue and blue-green LED's have led to a plethora of activity in all three continents into the heterostructures based on GaN and its alloys with AlN and InN. In this review, the status and future prospects of emerging wide bandgap gallium nitride semiconductor devices are discussed. Recent successes in p-doping of GaN and its alloys with InN and AlN, and in n-doping with much reduced background concentrations have paved the way for the design, fabrication, and characterization of devices such as MESFET's, MISFET's, HBT's, LED's, and optically pumped lasers. We discuss the electrical properties of these devices and their drawbacks followed by future prospects. After a short elucidation of materials characteristics of the nitrides, we explore their electrical transport properties in detail. Recent progress in processing such as formation of low-resistance ohmic contacts and etching is also presented. The promising features of quarternaries and double heterostructures in relation to possible current injection lasers, LED's, and photodetectors are also elaborated on  相似文献   

18.
孙书奎 《红外》2021,42(3):11-16
杂质是影响碲镉汞器件性能的重要因素之一.对于碲锌镉衬底晶体和窄禁带碲镉汞材料来说,杂质的影响更加显著.主要论述了碲镉汞材料中常见的杂质类型以及杂质在材料中的作用,并分析了影响器件性能的主要杂质.采用辉光放电质谱法(Glow Discharge Mass Spectrometry,GDMS)测试了材料中的杂质含量,同时通...  相似文献   

19.
采用常规的光刻热熔法及灰度掩模技术,结合离子束蚀刻与溅射制作面阵非梯度折射率型平面折射和平面衍射微透镜,定性分析了不同的工艺条件下所得到的平面端面微光学折种和形貌特征。给出了在石英衬底表面通过光刻热熔工艺和氩离子束蚀刻所得到的两种球面及圆弧轮廓特征的面阵册形掩模的表面探针测试曲线,对平面微透镜阵列与IRCCD成像芯片和半导体激光器阵列的集成结构作了初步分析。  相似文献   

20.
Power semiconductor devices are key components in all power electronic systems, particularly in hybrid, electric, and fuel cell vehicles. This paper reviews the system requirement and latest development of power semiconductor devices including IGBTs, freewheeling diodes, and advanced power module technology in relating to electric vehicle applications. State-of-the-art silicon device technologies, their future trends, and theoretical limits are discussed. Emerging wide bandgap semiconductor devices such as SiC devices and their potential applications in electric vehicles are also reviewed  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号