首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对轧制态30CrMo锯片用钢在830~890℃范围内保温10 min油淬后,在380~500℃温度范围内保温60min后水冷处理。采用光学显微镜、冲击试验机及洛氏硬度计分别分析其金相显微组织、硬度、冲击韧性等。结果表明:淬火组织为淬火马氏体+残余奥氏体;随着淬火温度的升高,淬火马氏体组织数量增多,尺寸长大;硬度随淬火温度的升高由830℃的48 HRC逐渐提高到890℃的54 HRC。随着回火温度的升高,试样的组织由淬火马氏体逐渐转化为回火马氏体、回火马氏体+回火屈氏体、回火马氏体+回火索氏体组织;硬度逐步降低,韧性相应提高。最佳热处理工艺为860℃(保温10 min)淬火+440℃(保温60 min)回火。  相似文献   

2.
研究了锯片基材75Cr1钢不同热处理工艺下的组织、晶粒度、碳化物分布以及力学性能。结果表明:780~840 ℃之间淬火,组织为细小的针片马氏体+少量残留奥氏体。随淬火温度升高,硬度略有升高,但均在63 HRC水平附近,晶粒度由10级降至8级,晶粒不均匀程度也更加明显;随回火温度升高,组织由回火屈氏体转变为回火索氏体,细小的颗粒状碳化物增多。800 ℃淬火+540 ℃回火,75Cr1钢组织为回火索氏体,细小碳化物弥散分布,硬度36.5 HRC,具有良好的强度和塑韧性匹配。  相似文献   

3.
18Cr2Ni4WA钢真空渗碳后热处理工艺的优化   总被引:1,自引:0,他引:1  
制定了两种不同的热处理工艺,研究18Cr2Ni4WA钢真空渗碳后回火、淬火和深冷工艺对材料组织和性能的影响。结果表明,18Cr2Ni4WA钢渗碳后,经高温回火、淬火、深冷和低温回火处理后,渗碳层深度几乎不受影响,表面残留奥氏体含量显著降低。经680 ℃×5 h两次高温回火+860 ℃淬火+-115.3 ℃深冷+160 ℃低温回火工艺处理后,试样表面硬度为64.2 HRC,渗碳层深度为0.86 mm;并得到由针状回火马氏体、少量残留奥氏体和弥散分布的点状碳化物组成的渗碳层组织和由低碳板条状回火马氏体组成的心部组织,不仅使得表面获得高硬度,同时保证了心部的强韧性。  相似文献   

4.
采用金相显微镜、扫描电镜、洛氏硬度计、冲击试验,观察和分析了7Cr17MoV马氏体不锈钢在990~1110℃淬火+180~220℃回火的组织和性能变化。结果表明:淬火组织为残留奥氏体和碳化物分布于马氏体基体上。随淬火温度的升高,残留奥氏体含量和马氏体过饱和度增加,针状马氏体组织变粗,1080℃淬火硬度升高到最大值62.5HRC。冲击试验结果表明:随回火温度逐渐升高,试样硬度有部分下降,但韧性显著提高,200~220℃时韧性最佳,达到19 J/cm~2。综合硬度和韧性考虑,最佳热处理工艺为1080℃淬火+200~220℃回火。盐雾试验表明:1080℃淬火+200℃回火后腐蚀率小于4%,符合使用要求。  相似文献   

5.
对轧制态75Cr1锯片用钢在800~880 ℃进行油淬并在400~480 ℃进行回火,采用光学显微镜、万能力学性能试验机、冲击试验机及洛氏硬度计分别分析其显微组织、力学性能变化规律。结果表明,淬火试样组织为马氏体+残留奥氏体;随着淬火温度的升高,马氏体组织不断粗化;硬度随淬火温度的升高由800 ℃的59 HRC逐渐提高到880 ℃的68 HRC。随着回火温度的升高,试样组织由淬火马氏体转化为回火马氏体、回火马氏体+回火索氏体组织;强度、硬度逐步降低,而塑性、韧性相应提高。最佳热处理工艺为840 ℃(保温20 min)淬火+460 ℃(保温60 min)回火。  相似文献   

6.
针对大尺寸液压破碎锤活塞用9CrV钢,研究分析了热处理工艺对其显微组织及力学性能的影响.结果 表明,经840℃淬火和300℃回火后,9CrV钢的组织为回火马氏体、粒状碳化物和残留奥氏体,其硬度为56.7 HRC,冲击吸收能量为4.66 J.随淬火温度降低至800℃,回火温度提高至400℃,9CrV钢的硬度降低至49.8 HRC,降幅近12.2%,而冲击吸收能量提高至8.98J,增幅达92.7%.这是由于降低淬火温度后未溶碳化物数量增多,一方面细化了组织,另一方面形成淬火后马氏体的含碳量降低,两者均为提高淬火组织的强韧性提供了基础.适当提高回火温度,组织由回火马氏体转变为回火屈氏体.通过淬火与回火工艺的综合调控,可有效提高9CrV钢的抗冲击能力.  相似文献   

7.
通过不同固溶温度与不同回火温度处理,研究了ZGCr17Ni2马氏体不锈钢组织及硬度的变化。结果表明,淬火温度提高,马氏体过饱和度增加,残余奥氏体含量增加,在1 040℃下淬火时组织为马氏体+残余奥氏体+碳化物+莱氏体,淬火硬度达到最大值57,继续提高淬火温度,马氏体粗化,硬度下降;回火温度在530℃以下时,回火硬度呈"马鞍状"变化,当回火温度达到600℃时回火组织转变为回火索氏体+残余奥氏体+碳化物+莱氏体+马氏体,回火硬度(HRC)降低至41。  相似文献   

8.
采用真空感应炉冶炼了试验钢,并进行了不同工艺的热处理。采用光学显微镜、扫描电镜对组织进行了观察,对洛氏硬度进行了检测。结果表明,试验钢淬火组织主要为细小的板条马氏体+大量残余奥氏体+未溶析出相,经-80℃深冷处理、低温回火后残余奥氏体含量逐步减少;随着淬火温度提高,回火马氏体基体逐渐粗化,第二相粒子数量逐渐减少,尺寸也减小;1030℃淬火并深冷处理后在150℃回火,试验钢获得最高的硬度,随着回火温度提高,基体组织逐渐由回火马氏体转变为回火屈氏体再到回火索氏体,第二相粒子逐渐粗化;硬度值先几乎不变,当温度超过450℃硬度值迅速下降,650℃时降低至34HRC。  相似文献   

9.
利用扫描电镜、金相显微镜、洛氏硬度计研究了P20塑料模具钢淬火及回火组织,并测定了硬度随淬火温度以及回火温度的变化.P20钢经830~920℃淬火得到板条马氏体.淬火后晶粒尺寸随淬火温度的升高有粗化的趋势但并不明显,直到890℃以后才明显粗化,因此,淬火温度应在830~890℃,以860℃为宜.P20钢硬度随回火温度升高而降低,碳化物析出增多并逐渐球化,马氏体板条边界逐渐变得模糊,有些板条合并变宽.P20钢经620℃×1 h回火后其硬度为32.8~35.8HRC,能满足预硬化硬度要求,而且经830~890℃淬火+620℃×1 h回火,硬度基本不随淬火温度变化,这将有利于工厂组织生产,因此最终选择预硬化工艺为860℃×30min淬火+620℃×1 h回火.  相似文献   

10.
通过1000~1200 ℃间隔50 ℃的系列加热温度对5Cr15MoV马氏体不锈钢进行空冷淬火试验,并采用光学显微镜、EBSD和洛氏硬度计对不同温度淬火后组织和硬度进行检测,研究了淬火温度对试验钢组织、晶粒尺寸、残留奥氏体含量以及硬度的影响。结果表明,试验钢淬火后组织为马氏体+未溶合金碳化物+残留奥氏体。随着淬火温度升高,马氏体板条尺寸增大,未溶碳化物量逐渐减少直至消失,残留奥氏体含量先增加后减少。试验钢的硬度变化趋势为先增加后显著降低,在淬火温度为1050 ℃达到最大值60.8 HRC。试验钢硬度主要是马氏体的含碳量、晶粒尺寸、残留奥氏体含量和碳化物含量综合作用的结果。  相似文献   

11.
采用SEM、TEM、硬度测试、冲击性能测试等方法,研究了不同热处理工艺对X22耐热钢组织及性能的影响。结果表明:X22耐热钢经1070℃×1 h油冷淬火处理后组织为板条马氏体,板条间有针状碳化物析出。经不同温度的回火处理后,X22钢组织依然保持马氏体板条形貌。当回火温度超过650℃时,针状碳化物消失,在马氏体板条和原奥氏体晶界上析出大量条状碳化物M_(23)C_6。随回火温度升高,X22钢硬度呈先降低后升高再快速降低的变化趋势,500℃时,硬度达到最大值52 HRC;X22钢的冲击功在500℃和650℃时出现了两次低谷,冲击功分别为11.7 J和9.7 J。  相似文献   

12.
对GCr15轴承钢摆线轮在不同温度淬火及低温回火后的组织、物相和硬度进行分析,通过摩擦磨损试验机和激光共聚焦显微镜对其摩擦磨损性能进行测试和表征。结果表明:经不同温度淬火及低温回火后,试样的组织主要由马氏体、碳化物和残留奥氏体组成。随着淬火温度的升高,试样中碳化物的平均尺寸和体积分数逐渐减小,马氏体含量也逐渐减少,而残留奥氏体含量逐渐升高,硬度先升高后降低;试样的摩擦系数与磨损率随淬火温度的升高先减小后增大,磨损机制主要为磨粒磨损,当淬火温度为840℃时,试样的磨损最轻微,耐磨性能最佳。  相似文献   

13.
利用扫描电镜、冲击试验机、硬度计研究了不同工艺处理低硫磷Si-Mn系低合金钢的显微组织和力学性能。结果表明:正火预处理可以改善铸态试样组织均匀性,使原本粗大且分布不均的铸态组织得到均匀细化。经正火预处理+890℃淬火+220℃回火时,组织为板条马氏体和少量残留奥氏体及贝氏体,洛氏硬度为47.3 HRC,V型缺口冲击吸收能量为34.6 J,综合力学性能最好。随着淬火温度的升高,马氏体间有碳化物颗粒析出,残留奥氏体量减少,硬度升高,但冲击性能下降明显。  相似文献   

14.
对国外P92钢进行不同温度(1040、1060、1080 ℃)淬火和1060 ℃淬火+不同温度(740、760、780 ℃)、不同时间(1、3、5、7 h)的回火热处理,研究热处理参数对其显微组织、晶粒度及硬度的影响。结果表明,经淬火后P92钢组织为板条状马氏体+残留奥氏体,随淬火温度的升高,马氏体组织板条逐渐变粗大,平均晶粒度由9级增大至7级。P92钢经1060 ℃淬火后,随着回火温度的升高和回火时间的延长,P92钢硬度逐渐降低,回火马氏体板条逐渐合并并向回火索氏体过渡,且回火过程中碳化物在晶界和晶内析出并不断长大。  相似文献   

15.
为探索适合喷射成形高速钢的热处理工艺,利用XRD、SEM等分析手段和硬度测试,研究了淬火温度和回火温度对喷射成形含铌M3:2型高速钢显微组织和硬度的影响。结果表明,试验钢淬火组织由马氏体、残留奥氏体和碳化物组成,随淬火温度升高,试验钢中碳化物数量减少。淬火硬度随淬火温度先增加后减小,低温淬火后回火未发现二次硬化现象。沉积态试样经过1220℃淬火,560℃回火后,硬度最高值为66.7 HRC。  相似文献   

16.
利用洛氏硬度计及场发射扫描电镜等研究了奥氏体化温度和回火温度对热锻模具用钢5Cr5Mo2V组织和性能的影响.结果表明:试验钢经过不同温度的淬火和回火处理后,组织均为回火马氏体+残留奥氏体+碳化物.当5Cr5Mo2V钢在920~1030℃淬火时,随淬火温度升高硬度值增加并于1030℃达到最大值62.53 HRC,之后硬度...  相似文献   

17.
通过显微组织观察、拉伸试验、冲击试验和洛氏硬度试验等方法,研究了GCr15轴承钢终热处理工艺中回火温度对其组织与力学性能的影响。结果表明:在本试验条件下,淬火态GCr15钢试样组织主要由淬火马氏体、残余奥氏体及碳化物组成。在440~760℃温度范围内,随着回火温度的升高,GCr15钢试样组织中不断有碳化物析出并聚集,残余奥氏体逐渐分解。GCr15钢试样经830℃×30min油淬+520℃×2h回火终热处理后,其硬度为48.3HRC,抗拉强度为1536MPa,伸长率为13.5%,断面收缩率为47.8%,GCr15钢的综合性能优良,达到渗碳工艺处理G20Cr2Ni4A钢性能水平。  相似文献   

18.
利用金相显微镜、洛氏硬度计等方法,研究了淬回火工艺对3.4wt%C高碳高铬铸铁组织及硬度的影响。结果表明:随淬火温度在960~1100℃逐步升高,基体由铸态的奥氏体转变为马氏体及残余奥氏体,一次碳化物及共晶碳化物未发生转变,二次碳化物逐渐减少,残余奥氏体逐渐增多;硬度先升高后降低,在淬火温度为1050℃时,硬度达到最高值64 HRC。随回火温度在450~650℃升高,基体组织由回火马氏体逐渐转变为回火索氏体,二次碳化物增多粗化,硬度逐步降低;最佳热处理工艺为1050℃/1 h空淬+510℃/1 h空冷回火,试样综合性能较好。  相似文献   

19.
分析了LD钢六角冷镦模真空淬火和多次回火后的显微组织和硬度,结果表明,LD钢经真空热处理后,组织为针状回火马氏体+少量残留奥氏体+一次和二次碳化物,显微组织较均匀,其硬度为59.5~60.0 HRC,满足技术要求。  相似文献   

20.
对国产75Cr1锯片钢进行800、840、860℃油淬再进行420、440、460℃回火处理试验。利用光学显微镜观察不同淬火温度下脱碳层形貌及淬火回火后的组织,分别用万能材料试验机、洛氏硬度仪测试材料的拉伸性能和硬度。结果表明,随淬火温度的增加脱碳层深度增加;经不同温度淬火+460℃回火,组织主要为回火屈氏体及部分颗粒状回火索氏体,但800℃时,组织还出现了一定量的非回火马氏体组织,硬度较低,在840℃淬火硬度最高。试验钢经840℃淬火后,随回火温度的增加,组织依次由回火马氏体转变到回火马氏体+回火屈氏体,再到回火索氏体,强度和硬度逐渐降低,塑性相应提高。国产75Cr1钢最佳热处理工艺为840℃(保温10 min)油淬+440℃(保温60 min)回火。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号