首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
滑溜水体积压裂是非常规致密储层的主要经济增产措施,支撑剂的运移与分布规律决定着复杂裂缝网络内支撑剂的最终分布形态和导流能力.文中采用PIV(粒子成像测速)系统捕捉支撑剂颗粒在主裂缝中的瞬时运移状态,研究了不同压裂液黏度、排量、砂比和支撑剂筛 目条件下支撑剂铺置后的砂堤平衡状态,揭示了砂堤前缘与末端流场的变化规律.结果表明:随着排量、砂比和支撑剂筛目的增大,以及压裂液黏度的降低,支撑剂颗粒在砂堤前缘入口处和离开砂堤峰部时的运移速度更快,湍流强度更大,形成的有效裂缝更长;砂堤处于平衡状态时的高度和时间随着排量增加而减小,砂堤整体形态变得平缓;砂比越大,砂堤峰部出现位置越靠近裂缝入口处;优化的排量为10~12m3/min、砂比控制在20%以下、压裂液黏度在6~16mPa·s、支撑剂筛目为40/70目时,形成的砂堤高度和长度最大.该研究成果可以为滑溜水体积压裂设计和施工提供有效的技术指导.  相似文献   

2.
为了解水力压裂过程中水力裂缝内支撑剂的铺置规律,基于平板裂缝开展了支撑剂输送试验,分析了泵注排量、压裂液黏度、注入位置、支撑剂类型对支撑剂铺置过程的影响;运用PIV/PTV技术,测试了压裂液–支撑剂两相运动速度,从颗粒运动角度分析了不同因素对最终砂堤形态的影响。试验发现:平板单缝内支撑剂铺置存在“裂缝前端先堆积至平衡高度,再稳定向后端铺置”和“砂堤整体纵向增长,稳定向后端铺置”2种典型模式,2种模式可以在泵注的不同阶段出现并转换;砂堤不同位置形态主控因素存在差异,注入位置与排量主要控制前缘形态,黏度与排量主要控制中部形态,黏度主要控制后缘形态;在裂缝远端,支撑剂沉降存在“回流式”和“直接式”2种模式,前者受涡流控制,后者则仅依靠重力沉降;现场施工时可考虑“定向射孔+大排量中高黏70/140目石英砂(主体支撑剂)+40/70目陶粒架桥+大排量中高黏70/140目石英砂长距离输送+排量尾追40/70目陶粒”,兼顾缝长方向远距离铺置和近井地带裂缝与井筒的高连通性。平板裂缝内支撑剂运移与铺置规律试验结果可以为页岩储层压裂主裂缝内支撑剂高效铺置及储层改造工艺参数优化提供参考。  相似文献   

3.
为了研究页岩储层体积压裂复杂裂缝支撑剂的运移与展布规律,构建了大尺度复杂裂缝支撑剂运移与展布评价实验系统,测试了次裂缝角度、注入排量、加砂浓度、支撑剂粒径、压裂液黏度等对支撑剂运移与展布的影响,研究了主/次裂缝中支撑剂的运移与展布规律。结果表明:(1)裂缝中流体流态随裂缝支撑高度增加逐步由层流向紊流转变;(2)支撑剂在裂缝中的运移方式主要包括悬浮运移和滑移运动;(3)分支前主裂缝的支撑剂展布形态与次裂缝角度、注入排量、加砂浓度和支撑剂粒径等参数相关,其中注入排量为最主要的影响因素;(4)分支后主裂缝的支撑剂质量比与次裂缝角度、注入排量、液体黏度、加砂浓度和支撑剂粒径呈正比,同次裂缝与主裂缝的流量比呈反比;(5)分支后次裂缝的支撑剂质量比与注入排量、次裂缝与主裂缝的流量比、压裂液黏度呈正比,与次裂缝角度、加砂浓度和支撑剂粒径呈反比;(6)分支后主裂缝的砂堤前缘角度同加砂浓度、支撑剂粒径、次裂缝与主裂缝的流量比呈正比,与次裂缝角度、注入排量和压裂液黏度呈反比;(7)次裂缝的砂堤前缘角度同次裂缝角度、加砂浓度与支撑剂粒径呈正比,和注入排量、压裂液黏度、次裂缝与主裂缝的流量比呈反比。结论认为,该研究成果可以为页岩储层体积压裂支撑剂的优选和压裂方案设计提供理论支撑。  相似文献   

4.
陈捷  胡海洋  刘立  娄毅 《断块油气田》2023,(5):728-733+750
水力压裂仍是低渗透性储层提高渗透性且获得经济产能的主要途径,尤其针对薄煤层,不同裂缝宽度裂缝内支撑剂运移规律受多个因素影响。文中采用数据建模、数值模拟和工程试验的方式,研究了压裂液参数、支撑剂参数对不同裂缝宽度支撑剂的铺砂面积和有效支撑裂缝长度的影响。结果表明:裂缝宽度影响和制约了支撑剂的运移,对于裂缝较发育且缝宽较宽储层,提高施工排量、压裂液黏度和优化支撑剂粒径与砂比,能有效地增大裂缝内支撑剂的铺置面积和有效裂缝长度。针对裂缝不发育且裂缝宽度较小储层,优化支撑剂的粒径和砂比,有利于增大裂缝的有效支撑裂缝长度。针对薄—中厚煤层,采用“高前置液占比、小粒径支撑剂、低砂比、短段塞式加砂方式”,能够有效提高其压裂波及范围和有效支撑效果,研究成果成功应用于贵州薄煤层煤层气开发。  相似文献   

5.
为了解决页岩油组合粒径+滑溜水的支撑剂加砂工艺中裂缝有效支撑差、导流能力弱的问题,建立支撑剂粒径分布的稠密离散相模型(DDPM),研究压裂主缝中组合粒径支撑剂加砂运移及铺置规律,并基于运移规律模拟结果,开展劈裂页岩岩板组合粒径不同铺置模式下的室内导流能力评价。结果表明:滑溜水携砂液体系下,裂缝内支撑剂叠置铺置时,后注入的支撑剂叠置于先注入支撑剂的顶端,且先注入的支撑剂会被后续注入的支撑剂向远端推移一定距离;组合粒径中粒径配比差异对于支撑剂运移形成的砂堤形态影响较小;大粒径组合逐级注入的方式更利于支撑剂在近缝口和裂缝内垂向铺置;在低闭合压力(p≤40 MPa)、铺砂浓度5 kg/m2条件下,沉降铺置方式最利于提高裂缝导流能力,其次为混合铺置,分段铺置方式最差;高闭合压力下(p>40 MPa),铺置方式对裂缝导流能力影响较弱。综合支撑剂运移模拟和导流能力评价结果,建议吉木萨尔页岩油组合粒径加砂工艺采用逐级注入的方式,并保证组合粒径中大粒径拥有较大配比。  相似文献   

6.
为了指导延长气藏的压裂改造开发,对延长气藏压裂改造中常用的支撑剂进行了支撑裂缝导流能力测试并确定测试介质和压裂液破胶的影响。采用灰色关联分析,确定不同支撑剂铺置方式中影响因素的敏感程度。研究表明:铺砂量一定,支撑剂导流能力随闭合压力增加而降低;闭合压力一定,支撑裂缝导流能力随铺砂量增加而增加;支撑剂组合的导流能力随低目数支撑剂占比增加而逐渐增大。裂缝前端铺置小粒径支撑剂,可以防砂和支撑微裂缝,裂缝中部铺置中等粒径起主要的支撑作用,大粒径的则处于缝口位置支撑缝口。受滑脱效应影响,采用气体测量得到支撑裂缝导流能力相比液体测量更高;支撑裂缝导流能力与压裂液破胶程度呈反相关关系;单一类型支撑剂,铺砂量影响最大,其次为气体流量和支撑剂等效目数、闭合压力;2种类型支撑剂组合,气体流量的影响最大,其次为支撑剂等效目数、闭合压力;3种类型支撑剂组合,支撑剂等效目数影响最大,其次为气体流量、闭合压力。  相似文献   

7.
采用可视化平行板裂缝物理模拟实验装置,开展了不同粒径支撑剂在不同黏度压裂液、变排量下的动态携砂实验,模拟现场施工排量下支撑剂铺置的规律与支撑剖面。利用API裂缝导流设备和岩心驱替装置,开展主裂缝和微裂缝支撑导流能力实验。研究表明,非剪切裂缝渗流能力在一定闭合压力下几乎全部散失,分支缝和远端微裂缝少量的支撑,会获得一定的渗流能力。滑溜水依靠其黏度基本不具备携砂能力,使用滑溜水进行体积压裂,更多依赖水动力携砂,而依靠黏度携砂更有利于将支撑剂输送到裂缝远端。在进行体积压裂时,段塞打磨建立好裂缝通道后,先期泵注一定量相对大粒径支撑剂,实现近井裂缝下部高导流支撑;然后泵注小粒径支撑剂,同时也可适当提高携砂液黏度,实现分支缝和裂缝远端支撑;最后高砂比尾追相对大粒径支撑剂,实现近井裂缝高导流支撑,从而保障和实现体积压裂裂缝的理想支撑,从根本上提高体积压裂效率与效果。  相似文献   

8.
低密度支撑剂具有沉降速度慢、有效支撑缝隙长等特性,在缝网压裂中的应用越来越广泛.目前低密度支撑剂在复杂裂缝中运移铺置规律研究较少,且主要通过室内实验开展分析.基于计算流体力学(CFD),建立了压裂液和低密度支撑剂的液固两相流数学模型,运用有限体积法进行求解,通过与室内实验结果对比验证了模型的可靠性与准确性,分析了低密度支撑剂在复杂裂缝中的沉降运移规律及其与常规支撑剂的区别,研究了铺置过程中泵注排量、砂比、压裂液黏度以及裂缝夹角的影响因素.结果表明:低密度支撑剂体系运移能力更好,降低了在缝口处的沉降堆积,在复杂裂缝中铺置更均匀;采用大排量、高黏度压裂液可减缓低密度支撑剂在分支缝的阻力效应,更好地铺置裂缝深处,但缝口支撑剂更易被卷起,形成不均匀砂堤;在现场施工时,建议初期采用大排量、高黏压裂液携带低密度支撑剂铺置缝网远端,后期用大排量、低黏度尾追中—高密度支撑剂铺置裂缝近端;裂缝夹角对低密度支撑剂铺置运移影响较小,采用低密度支撑剂可以减缓沉降,有效避免裂缝相交处发生砂堵.  相似文献   

9.
利用石英砂代替陶粒支撑剂能有效降低施工成本,在致密油气藏压裂改造中广为应用。为探究石英砂支撑剂对裂缝长期导流能力的影响规律,选用20~40目、40~70目和70~140目石英砂,开展长期导流能力测试实验,探究闭合应力、铺砂浓度、粒径组合、铺置模式等因素对石英砂长期导流能力的影响并拟合参数化经验模型。研究认为:长期导流能力随铺砂浓度的增加,先升高再降低,反映了从“支撑”到“封堵”的演化;在低铺砂浓度条件下,大粒径石英砂易破碎堵塞流道,因此可在高闭合压力储层优选细砂,在低闭合压力储层优选中砂或粗砂;在考虑混合铺置时,应先采用低黏度压裂液泵送大粒径石英砂,后采用高黏度压裂液泵送小粒径石英砂。同时文章给出的混合铺置导流能力预测模型适用于混合铺置支撑剂粒径及比例的优化设计。  相似文献   

10.
为改善支撑剂在裂缝中的铺置形态和提高压裂增产效果,采用实验模拟方法,应用可视化裂缝平板装置开展压裂液携砂实验,结合支撑剂颗粒的微观运动轨迹和砂堤的宏观形状,描述缝内砂堤的形成过程,分析黏性和非黏性压裂液携砂方式的区别,研究射孔孔眼间干扰、压裂液排量、压裂液黏度和施工砂比对缝内砂堤形态的影响规律。结果表明:支撑剂在裂缝中的运移是流化和沉积共同作用的结果,以流化拖拽和输送为主;黏性压裂液中流化层和砂堤之间可形成不流动的液体薄层,对颗粒具有托举作用,减小流体和颗粒间的摩擦和碰撞;砂堤的形成过程共经历砂堤形成、生长、平衡状态和活塞状推进4个阶段,在射孔孔眼干扰和液体冲蚀的共同影响下,形成的砂堤形态可由堆积角、平衡高度和前进角表征,裂缝内存在近井筒和缝高方向的无砂区;砂堤的平衡高度主要取决于支撑剂颗粒的运动速度,与施工排量和压裂液黏度成反比,与砂比成正比。该研究可为压裂施工参数优化提供参考。  相似文献   

11.
支撑剂在裂缝中的铺设形态决定了压裂改造的最终效果,为研究压裂通道中砂堤的形成规律,通过微地震事件、缝高模型的建立、砂堤平衡高度公式的推导,结合裂缝形态、铺砂形态特征以及沉降影响因素开展了支撑剂的铺置研究。理论及现场试验表明:压裂中改变施工排量、携砂液黏度以及支撑剂密度能有效调整支撑剂的沉降速度以及运移距离,从而达到改善支撑剂的铺置形态。  相似文献   

12.
裂缝的导流能力对于水力加砂压裂效果影响很大,分析裂缝导流能力影响因素、研究如何增加裂缝导流能力,对于提高压裂增产效果具有重要意义。针对长庆油田安83区块致密砂岩储层的特点,使用Meyer软件对裂缝的各项参数进行模拟预测,考察了支撑剂类型、粒径、铺砂浓度、嵌入以及压裂液残渣对砂岩储层裂缝导流能力的影响,并进行了增产效果预测。结果表明:陶粒的导流能力远大于石英砂和树脂砂;低闭合压力下,粒径越大,导流能力越高,随着闭合压力的增大,大粒径支撑剂导流能力下降幅度较大;不同粒径组合支撑剂的导流能力下降幅度相比较于单一粒径支撑剂要平缓得多;铺砂浓度越高,裂缝导流能力越高;当闭合压力为70 MPa时,支撑剂的嵌入可使导流能力下降30.1%;压裂液残渣可使不同粒径支撑剂的裂缝导流能力出现不同程度的下降;增产倍数与裂缝导流能力成正比,当陶粒筛选目数10/20、20/40和40/60组合且比例为1∶3∶1时,增产倍数最大。在低渗透储层压裂现场应用,增产效果较好。  相似文献   

13.
为了研究压裂过程中裂缝内支撑剂的动态输砂规律及分布形态,采用自主研制的多尺度裂缝系统有效输砂大型物理模拟实验装置,进行了压裂液黏度、支撑剂类型、注入排量和砂比等对支撑剂在不同尺寸裂缝中的动态输送和砂堤剖面高度影响的模拟实验。实验结果表明,裂缝内动态输砂规律的影响因素,按影响程度从大到小依次为压裂液黏度、支撑剂粒径、砂比和排量;压裂液黏度越高,沉砂量越少,砂堤剖面高度越小而平缓,且在主裂缝中更为明显;支撑剂粒径越大,沉砂量越多,砂堤剖面高度越大,且在主裂缝中更加明显;砂比越高,沉砂量越大,砂堤剖面高度也越大,且在分支缝中增幅更大;随排量增大,主裂缝中的沉砂量略减小,分支缝中的沉砂量差别不大。研究结果为优选压裂液、支撑剂,制定压裂方案,以及优化压裂施工参数提供了理论依据。   相似文献   

14.
裂缝扩展与支撑剂运移动态耦合是目前水力压裂数值模拟技术面临的挑战之一。为了探究页岩动态裂缝缝内支撑剂铺置特征,基于三维离散元方法,建立考虑层理的页岩储层裂缝扩展与支撑剂运移动态耦合数值模型,分析了不同支撑剂粒径、支撑剂密度、压裂液黏度和支撑剂注入方式下的裂缝扩展与支撑剂铺置规律。研究表明:粒径越小,支撑剂铺置范围越广,铺置越均匀,粒径为150μm的支撑剂的铺置面积与铺置效率是粒径为600μm的支撑剂的1.8倍;支撑剂密度不是影响裂缝扩展和支撑剂运移的主要因素;压裂液黏度越高,裂缝面积和铺置面积越小,铺置效率越高,黏度从1 mPa·s增至15 mPa·s,裂缝面积减少45%,铺置面积减少34%,铺置效率增大12%;支撑剂注入方式为阶梯注入时,压裂液造缝与携砂效果最好。该研究成果可为页岩储层有效改造提供理论指导。  相似文献   

15.
滑溜水压裂液对致密储层伤害较低,但携砂能力弱,难以实现高砂比、长距离携砂,造成支撑缝面积远低于改造缝面积。通过气悬浮支撑剂技术,对支撑剂表面进行特殊改性,使其具有吸附气泡的能力,吸附气泡后的支撑剂体积密度大幅降低,运移能力大幅增强。室内实验表明,经气悬浮剂改性的20/40目及以下粒径的支撑剂,在常温、常压、黏度为15 mPa·s的滑溜水中可100%悬浮,观察2 h无沉降。动态输砂实验表明支撑剂在裂缝中呈整体均匀铺置,高温高压条件下气泡仍能对支撑剂有效悬浮。岩心伤害实验表明,破胶液和含气悬浮剂的破胶液对岩心渗透率的伤害率接近,且均低于10%,说明气悬浮剂不会对储层带来明显的附加伤害。该气悬浮支撑剂压裂技术在长庆油田鄂尔多斯盆地东部致密砂岩气藏开展了7口井先导实验,以黏度9~15 mPa·s的滑溜水在5 m3/min排量下施工,压后产量为邻井常规压裂的1.2~1.9倍。气悬浮支撑剂将对压裂液黏度的需求从40~80 mPa·s的线性胶降至10 mPa·s左右的滑溜水,大幅降低了对压裂液黏度的依赖,从而降低了储层伤害,同时增加裂缝铺置效率,有利于提高单井产量及开发效益。  相似文献   

16.
为了研究压裂和返排过程中支撑剂在裂缝中的运移、沉降和回流规律,自主研制了“YF-1”型压裂输砂和返排一体化模拟实验装置,在模拟储层温度、闭合应力和滤失情况下,开展了不同裂缝宽度、压裂液黏度、支撑剂类型、排量和出砂临界流速等因素在输砂和返排过程中对砂堤剖面的影响实验。实验结果表明:输砂和返排过程中,液体黏度是影响砂堤剖面的最主要因素,其次是支撑剂粒径和排量,裂缝宽度对砂堤剖面的影响最小;在返排过程中,液体黏度越小,出砂临界流速越大;缝宽和支撑剂粒径越大,出砂临界流速越大,在压裂后放喷时,应保证压裂液完全破胶,避免出砂。研究结果为压裂液优选、压裂施工参数优化、支撑剂优选及压裂后返排制度的制订提供了依据。  相似文献   

17.
裂缝有效导流能力是评价压裂施工效果的主要参数,也是影响压裂增产效果的最重要因素之一。设计了多尺度裂缝导流能力实验方法,采用单一粒径和组合粒径的铺置方式,研究了闭合压力、粒径组合方式、铺砂浓度及应力循化加载条等因素对多尺度主裂缝及分支缝内支撑剂的导流能力变化的影响。实验研究结果表明:随着闭合压力增加,大粒径支撑剂与小粒径支撑剂的导流能力差距逐渐变小,主裂缝及分支缝内支撑剂导流能力逐渐降低,而且这种降低趋势存在明显的转折点。组合粒径铺置条件下,主裂缝及分支缝内支撑剂组合均存在最优的组合方式。主裂缝及分支缝内支撑剂铺置砂浓度越高,导流能力也越高;随着闭合压力增大,高浓度铺砂与低浓度铺砂条件下的导流能力差距逐渐变小。应力加载破坏对支撑剂导流能力的影响是不可逆的。现场应用表明,在满足压裂工艺要求前提下,通过支撑剂组合方式及加砂方式的合理优化,可有效提高裂缝导流能力及压后产量。研究结果为体积压裂方案优化及现场施工提供基础数据依据。   相似文献   

18.
通道压裂是低渗透致密油气藏高效、低成本开发的关键技术,其关键是在水力裂缝中形成供油气流动的畅通通道网络,但目前针对通道压裂支撑剂铺置形态、流动通道特征研究尚处于起步阶段。通过大型平板裂缝可视装置,开展通道压裂支撑剂动态输送实验研究,分析纤维、压裂液、支撑剂、泵注排量和脉冲时间对支撑剂输送和流动通道形态的影响。实验结果表明:纤维和压裂液决定能否在支撑裂缝中获得流动通道,而泵注排量和脉冲时间对流动通道形态有较大影响,而支撑剂密度和粒径对流动通道形态几乎无影响;胍胶分子链缠绕在纤维表面,使得纤维网状结构范围增大、强度增强,两者共同提高了携砂液脉冲段在输送过程中的稳定性;流动通道类型可以分为3类,且流动通道形态受到泵注排量和脉冲时间乘积的控制。当脉冲单元注入参数为2.5~5.0 L时,形成的高速通道形态最优,支撑裂缝导流能力最大。  相似文献   

19.
目的增加裂缝导流能力,提高致密砂岩气的压裂增产稳产效果。 方法为了探究加砂压裂技术在大川中沙溪庙致密砂岩储层改造中的适应性,针对该储层的特点,采用API裂缝导流能力测试仪,考查了支撑剂类型及粒径、铺砂浓度、闭合压力及压裂液类型对支撑裂缝导流能力的影响。 结果相同粒径陶粒的支撑裂缝导流能力大于覆膜石英砂和石英砂,但覆膜石英砂的导流能力受闭合压力的影响最小;0.106~0.212 mm石英砂与0.212~0.425 mm覆膜石英砂的不同组合支撑剂粒径(质量比分别为1∶4、1∶1和4∶1)支撑剂导流能力下降幅度相比单一支撑剂更加平缓。支撑剂组合为4∶1的裂缝导流能力高于1∶4和1∶1组合,在高闭合压力条件下接近0.212~0.425 mm覆膜石英砂用作单一支撑剂时的裂缝导流能力。在低闭合压力条件下,增加铺砂浓度促使导流能力明显增大。而随着闭合压力的增加,这种影响程度逐渐减弱。支撑剂采用(0.106~0.212 mm石英砂)∶(0.212~0.425 mm覆膜石英砂)用量为4∶1的组合支撑剂,当闭合压力为41.4 MPa时,清水压裂破胶液处理后的液测导流能力较质量分数为3% 的KCl降低25.43%,返排压裂破胶液处理后的液测导流能力较质量分数为3% 的KCl降低58.34%。 结论实验结果指导了现场压裂支撑剂类型、粒径以及铺砂浓度等施工参数的选择,在四川盆地川中沙溪庙组致密气储层进行现场应用,获得了较好的压裂增产效果。   相似文献   

20.
为了认识陆相页岩气储层裂缝中支撑剂的铺置规律,采用可视裂缝模拟系统开展支撑剂沉降铺置实验,模拟了不同压裂液黏度、排量、砂比、支撑剂粒径和支撑剂密度条件下支撑剂运移沉降的过程,同时采用PIV粒子测速技术绘制了砂堤入口处与前缘处的速度场,进一步分析了支撑剂铺置过程中颗粒的运动特征。研究结果表明,支撑剂在人工裂缝中的铺置分为四个阶段:早期阶段、中前期阶段、中后期阶段和平衡状态阶段。裂缝入口处:悬浮颗粒的速度方向近似水平向前,砂堤表面颗粒速度沿着坡面向上,支撑剂的推进主要依靠液体黏滞力的携带作用;排量增大,流场出现明显的扰动现象,排量越大,扰动程度越大。砂堤前缘处:坡顶处流场存在明显的涡流现象;液体黏度增加,涡流强度减弱,黏滞力增加,颗粒在液体冲击和携带作用下,铺置更远的距离;排量增加,整个前缘区域出现更大的旋涡,涡流作用更加强烈,此时液体的冲击作用使得支撑剂铺置效果更好;砂比增加,旋涡数量增加,强度增强,波及范围增大,支撑剂运移到裂缝更远端。滑溜水中支撑剂粒径越小、密度越大,砂堤越均匀,但要达到铺置效果,需要携砂液的作用。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号