首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
海上特别是深水钻井作业井筒温度压力准确预测是保证钻井作业安全以及钻井/钻井液设计与评估的重要参数。由于海水和地层双重影响井筒温度变化较大,而钻井液物性(密度、流变性等)受井筒流动传热的影响较大,同样钻井液物性的改变反过来也会影响井筒温度压力的准确预测,如果钻井液参数视为常数,按照地面条件下钻井液物性预测井底压力和温度则其精度难以保证,在钻井液密度敞口非常小的地层,可能会产生井漏、溢流等井下复杂或事故。本文分别对深井水基钻井液的密度、黏度等物性参数预测模型进行了优选,建立了深井钻井井筒流动传热模型预测井筒压力温度,并分析了工艺参数对井底压力温度的影响。本研究为准确井底压力温度、预防钻井复杂事故,保障海上深水安全高效钻井具有较高的指导价值。  相似文献   

2.
高温高压条件下钻井液当量静态密度预测模型   总被引:4,自引:2,他引:2  
高温高压井中,钻井液密度受温度和压力的影响较大,如果按照钻井液地面物性参数来计算井底静压则会产生较大误差,在孔隙压力与破裂压力差值很小的井中,可能会产生井涌、井喷或井漏等井下复杂情况或事故.从井筒温度场的数值模拟入手,首先建立了钻井液循环期间井筒的温度分布模型,然后通过高温高压钻井液密度试验,分析了钻井液的高温高压密度特性,并在试验的基础上建立了高温高压钻井液密度预测模型,在此基础上,用迭代数值计算方法建立了钻井液循环期间当量静态密度预测模型.该模型将循环期间的井筒温度场模型与高温高压钻井液密度预测模型结合起来,计算出的钻井液当量静态密度较为准确.该模型为控压钻井技术提供了理论依据,对于合理控制井下压力、预防井下复杂情况和事故的发生具有指导意义.  相似文献   

3.
维持井壁稳定的充气钻井液密度确定方法研究   总被引:1,自引:0,他引:1  
金衍  陈勉  张广清 《天然气工业》2006,26(10):80-82
随着我国西部和海洋深层天然气勘探开发不断加快、深入,钻井不断遇到高温、高压、气侵环境,受气体侵入的井筒钻井液其密度随温度和压力的变化而变化,这导致常规井壁稳定研究确定的当量静态钻井液密度不能有效地阻止井下井壁坍塌、缩径引起的复杂情况。国内外高温高压条件下钻井液密度计算模型存在着明显的问题:①没有考虑气体在环空中的影响,此时环空中是气液两相流体的流动,不能用单相液体的情况来对待;②井筒温度用地温梯度来代替不合理。为此,在确定有气侵、压耗和温度影响的有效安全钻井液密度时,分析了气液两相钻井流体受井筒压力、温度、气侵量与钻井液密度的相互影响关系,结合地层参数、钻井水力参数和钻柱结构,通过对温度场与压力场的耦合求解,获取了有效安全钻井液密度的下限和上限,计算结果在实际钻井中得到了较为成功地应用。  相似文献   

4.
油基钻井液的密度受温度和压力影响显著,掌握油基钻井液在不同温度和压力条件下密度的变化规律是钻井安全的重要保障。基于现场配方在室内配制了相同组分、不同密度的4种油基钻井液,使用Anton Paar公司的流体高温高压密度测试仪测定了4种油基钻井液的密度在温度范围60~220 ℃、压力范围20~120 MPa内的变化,探究了温度和压力对油基钻井液密度的影响规律,并建立了油基钻井液密度的温压二元数学模型。使用现场不同密度的油基钻井液对模型的准确性进行了验证,结果表明预测值与实测值之间具有较高的一致性,平均预测准确度达97.93%,能够满足现场使用的需要。另外对2种类似配方的油基钻井液进行了密度准确性验证,结果显示平均误差为9.24%,精度较高。   相似文献   

5.
井眼内钻井液密度是进行各种钻井施工和设计的必要的基础数据,高温高压环境下的超深井钻井液密度不再是一个常数,而是随温度和压力的变化而变化,因此有必要对超深井钻井中高温高压对钻井液密度的影响进行研究。利用高温高压钻井液密度模拟实验装置,采用胜科1井现场配制的超深井钻井液,测量了温度、压力对超深井水基钻井液密度的影响特性,根据测量结果,建立了温度、压力影响下的水基钻井液密度预测模型。结果表明,水基钻井液密度受温度变化影响比受压力变化影响大,随着温度、压力的增大,钻井液密度降幅较大,同时,高温高压下钻井液更具有可压缩性。建立的预测模型为合理确定现场钻井液密度范围提供了一种新方法。  相似文献   

6.
高温高压深井在钻井和完井时,由于钻井液在井筒内受到温度和压力的双重作用,使得地面测量的钻井液密度与井筒内实际密度存在差异,导致井筒液柱压力难以准确计算。分析国内外有关油基钻井液密度的预测模型,前人的模型均为特定配方条件下少数实验数据回归的经验模型,不具有通用性,且计算精度难以满足深井(尤其是超深井)的需求。为此,采用数学解析法建立精确的钻井液密度和液柱压力预测模型。与多位学者的经验模型对比,认为多数经验模型为新建解析模型的简化,该解析模型能更全面准确地反映温度和压力对钻井液密度的影响。在实际应用时,将油基钻井液视为基础油、盐水及固体材料的混合物,通过室内实验数据确定基础油的密度函数,可实现多种配方及油水比的油基钻井液密度及井筒液柱压力的预测。  相似文献   

7.
在高温深井中,钻井液密度、流变性受压力和温度的影响较大,如果按照钻井液地面物性参数来计算当量循环密度,则会产生很大误差,在孔隙压力与破裂压力差值很小的井中,可能会产生井涌、井喷或井漏等后果.从钻井循环期间井筒温度场模型入手,建立了高温高压钻井液密度、当量静态密度、流变参数以及当量循环密度预测模型.经实验验证,所建立的高温高压钻井液密度、流变参数模型的预测值与实测值一致,相关系数都在0.99以上,使用当量循环密度模型比用常规方法计算结果更为准确.该模型为压力管理钻井技术提供了理论依据,对于合理控制井下压力,预防复杂和事故的发生具有指导意义.  相似文献   

8.
超深井、特深井井筒温度和压力分布范围宽,钻井液流变性受超高温超高压影响显著,基于常规流变模式的井筒压力预测误差较大,文章通过开展温度为20~220℃、压力为0.1~200 MPa的水基钻井液和油基钻井液流变性测试实验,提出了不同温度和压力范围内的钻井液分段流变模式优选方法,建立了考虑多因素综合影响的钻井井筒压力精确预测模型。研究结果表明,随着温度和压力的变化,钻井液流变曲线的变化规律不一致,单一流变模式无法完全表征钻井液的流变特性;赫巴流变模式对100℃以下的水基钻井液和140℃以下的油基钻井液的流变性适用性更好,其他温度范围内罗斯流变模式的适用性更好;分段流变模式对井底压力的影响较为明显。将模型的计算结果与实测数据进行对比,发现井底压力预测误差在0.3 MPa以内,立管压力预测误差小于0.6 MPa;相对于油基钻井液,水基钻井液中的井筒压力预测误差更小。研究结果能够为超深井、特深井井筒压力精确预测奠定理论基础。  相似文献   

9.
付建红  许超  张智  黄贵生  许亮斌 《钻采工艺》2012,35(4):85-87,127,128
在深水钻井过程中,泥线上、下井筒温度差异较大,受温度、压力的影响,气体会溶解于钻井液中,也会从钻井液中逸出,气体在环空中存在的状态对环空压力的影响较大。为此,以天然气在水和油中的溶解度计算模型为基础,建立了气体在水基钻井液和油基钻井液中的溶解度计算理论模型,分析了深水环境下气体在水基钻井液和油基钻井液中的溶解度随温度、压力的变化。计算结果表明,随着压力的增加,气体在水基和油基钻井液中的溶解度随之增加; 随着温度的增加,气体在水基和油基钻井液中的溶解度减小。在相同条件下,油基钻井液气体溶解度远大于水基钻井液气体溶解度。  相似文献   

10.
深水控制泥浆帽钻井技术可以应对严重漏失地层和高压、高含硫地层的钻井问题,但钻井水力参数的设计与计算较为困难。为此,结合深水钻井工艺流程,建立了深水控制泥浆帽钻井井底压力计算模型,给出了深水钻井不同工况下的钻井液密度确定准则和钻井液当量循环密度计算方法,并基于井筒内循环压耗分析得到了水面泵和水下泵的泵压计算方法;针对严重漏失地层和高压、高含硫地层的井筒压力分布特点,给出了该工况下的泥浆帽高度计算方法;结合井眼清洁准则和漏失量与漏失压差的关系,给出了牺牲流体排量计算方法,并以此为基础提出了深水控制泥浆帽钻井水力参数设计流程。以一口深水井为例,对控制泥浆帽钻井水力参数进行了算例分析,结果表明:泥浆帽高度主要由井底压力的大小决定,钻井液密度与排量的大小可对其产生一定影响,所以通过调节泥浆帽高度可以控制井筒压力。   相似文献   

11.
深水高温高压气井钻井过程中,井筒大温差、大压差效应会使钻井液性能发生较大改变,进而影响井筒流动参数和钻井施工安全,因此准确模拟井筒温压场对确保深水高温高压井安全钻进至关重要。根据深水钻井工艺和高温高压地层的特点,充分考虑了井筒温压场和钻井液性能相互影响,结合增压管线流体进入隔水管环空引起的传热和传质,建立了适用于深水高温高压气井钻井的井筒瞬态温度压力耦合计算模型,提出了相应的迭代求解算法,并通过实例计算,进行了参数敏感性分析。研究结果表明:本文模型计算值与现场实测数据基本吻合,验证了模型的正确性;隔水管增压管线排量会使环空温度显著降低,进而影响整个井筒温度,因此不可忽略增压排量的影响;钻井液性能受井筒温度和压力影响较明显,在计算过程中忽略温度,压力和钻井液性能之间的耦合作用会产生较大误差。本文研究成果可为深水高温高压气井钻井过程中井筒温压场预测及水力参数设计提供理论指导。  相似文献   

12.
油基钻井液高温高压流变参数预测模型   总被引:10,自引:3,他引:7  
在高温高压深井中,钻井液流变性受温度和压力的影响较大。研究油基钻井液的高温高压流变特性,建立宾汉流体的流变参数预测模型,对于现场及时调整钻井液性能、精确计算环空压降、实现高温高压井当量循环密度的精确预测及合理控制井底压力具有重要意义。对具有典型配方的油基钻井液在高温高压下的流变特性进行了研究,通过对实验数据进行多元非线性回归分析,建立了预测高温高压条件下油基钻井液表观黏度、塑性黏度和动切力的数学模型。由模型得到的预测值与实测值具有较好的吻合性,相关系数均在0.98以上。该模型可用于深部井段流变参数的预测和现场水力参数的精确计算。  相似文献   

13.
在高温高压超深井的钻探中,由于形成了相对较窄的钻井液安全密度窗口,同时钻井液的密度受温度和井筒压力的影响比较大,地面所配置的钻井液密度和井筒中钻井液密度不同,因此,必须准确的计算并控制钻井液的密度,确保超深井的安全施工。在前人研究基础上,基于超深井中温度和压力对当量静态钻井液密度的影响建立了模型,并对莫深1井的钻井液密度进行了设计分析,研究了井底压力系数和井筒温度对当量静态钻井液密度的影响。  相似文献   

14.
关于无隔水管钻井在钻柱未充满工况下的井筒温度和压力模型还未见报道。鉴于此,推导了保证无隔水管钻井钻柱内充满钻井液的最低海面泵排量(零立压排量)的计算公式。针对钻柱未充满工况,建立了无隔水管钻井稳态温度计算模型,并在考虑温度和压力对钻井液密度影响规律的基础上建立了当量循环密度(ECD)计算模型。研究结果表明:零立压排量随水深增加而增加,随井深增加而减小;水深越大,相同排量下的平衡液面深度距平台越远;深水无隔水管钻井的井筒温度变化规律与陆上井筒温度变化规律一致,但温度要低很多,因此井底压力和ECD变化也较小;由于深水井高温高压窄密度窗口的特点,所以计算井底压力和ECD时需要考虑温度模型。研究结果对无隔水管钻井水力参数的确定具有一定的指导意义。  相似文献   

15.
在高温高压井中,当钻遇复杂地层时需及时调整钻井液的密度。目前所建立的油基钻井液在高温高压条件下的密度预测模型都是根据实验结果建立的经验模型,尽管这些模型具有较高的拟合精度,但当钻井液密度发生改变时,其模型中的各项回归系数就不再适用。建立了一个新的密度预测模型,其特点是,当油基钻井液配方不变时,可根据某一给定密度油基钻井液的含温度、压力的密度模型,准确地预测其加重后在高温高压条件下的密度。并且,将模型计算值与实验数据进行对比可以发现,加重材料的加入会对钻井液造成一个附加的体积变化,因而经本研究修正后的预测模型具有更高的准确性。  相似文献   

16.
针对CML双梯度钻井井筒温压耦合场的相关研究较少。为此,基于CML双梯度钻井的工艺特点,考虑井筒内钻井液的流动特点以及温度、压力对钻井液物性参数的综合影响,建立了井筒温压耦合场数学模型,并结合钻井数据进行了数值计算和敏感性分析。计算及分析结果表明:返回管线与海水之间为单管横掠式传热,受到周围环境温度的影响较大,其温度分布与海水温度分布类似,井筒温度对钻井液密度的影响要大于压力的影响;在CML钻井中,通过动态调节钻井液帽的高度可以灵活控制井筒压力;通过对钻井液帽高度、泵压、排量进行优化设计,可以更好地满足对目标井底压力的控制需求。所得结论可以为深入研究CML双梯度钻井的控压钻井工艺设计提供理论参考。  相似文献   

17.
高温高压钻井液P-d-T特性及其对井眼压力系统的影响   总被引:6,自引:0,他引:6  
在高温高压环境下的钻井与完井,既困难,危险性又大。文中阐述了地温梯度、入口钻井液温度、钻井液类型等因素对当量静态钻井液密度的影响;建立了高温高压井中当量静态钻井液密度的计算模型;分析了钻井液密度变化对井底静压、动压、当量钻井液循环密度和动态波动压力的影响。结果表明,利用地面测量的钻井液密度计算井下压力,只适用于浅井和中深井;对于安全密度窗口很窄的高温高压井,必须考虑井筒温度和压力变化对钻井液密度及井内压力系统的影响,才能确保高温高压井的施工安全。  相似文献   

18.
高温高压储层安全钻井液密度窗口确定技术   总被引:4,自引:0,他引:4  
井壁温度变化和井壁渗流对高温高压储层安全钻井液密度窗口的影响不容忽视,而确定钻井时安全钻井液密度窗口的常规方法中没有考虑井壁温度变化及井壁渗流的影响,为安全钻井带来了隐患。为此,依据孔隙热弹性小变形应力叠加原理,从附加温变应力场以及附加渗流应力场作用下井周应力场计算出发,结合地层的强度准则,建立了综合考虑井壁温度变化及井壁渗流情况下高温高压储层坍塌压力、破裂压力的计算模型,并分析了井壁温度变化及井壁渗流对安全钻井液密度窗口的影响规律。为高温高压储层安全钻井液密度窗口的设计提供了依据。  相似文献   

19.
高温高压深井的安全压力窗口窄,井筒内不同深度之间的流体温差和压差大,且井内流体受到地层加热膨胀和液柱压力压缩造成密度变化,因而容易因入井流体初始密度选择不当造成压力失稳。利用自主研制的高温高压流体密度变化测量仪,进行了温度和压力对淡水、隔离液、水泥浆和矿物白油密度的影响试验,得到了相应的关系曲线;筛选出了适合固井水泥浆温度、压力变化的密度模型——Dodson-Standing模型;通过Drillbench软件,分别计算了入井初始密度1.2和2.0 kg/L水基钻井液和油基钻井液,在井下不同地温梯度下的当量静态密度,得到了4幅对应图版,该图版可为高温高压深井的钻井液和固井液密度设计提供参考。试验结果表明,对于井深为5 000 m、井底静态温度为270 ℃的井,入井初始密度1.2 kg/L水基钻井液的密度可降低5.58%,油基钻井液的密度可降低6.41%。   相似文献   

20.
极地永久冻土层的低温条件会影响钻井液的流变性,从而影响极地钻井中井筒温度和压力的分布.为了解极地永久冻土层低温条件对钻井中井筒温度和压力分布的影响规律,为极地钻井设计和钻井施工提供依据,分析了低温对水基和油基钻井液流变性的影响,考虑低温对钻井液流变性的影响、永久冻土层与井筒之间的耦合作用,建立了极地钻井井筒温度压力预测...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号