首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
Studies in rats and guinea pigs indicate that local changes in inhibitory transmitters may underlie deafness-induced plastic changes in electrophysiological responsiveness of cells of the mature central auditory system. Following 21 days of bilateral deafness there is an increase in evoked Fos-immunoreactive neurones in the central nucleus of the inferior colliculus (CIC) to contralateral cochlear electrical stimulation, compared with normal or 1-day deafened animals. Deafness is also associated with a dramatic reduction in the population of CIC neurones that respond with suppression of activity to electrical stimulation. Moreover, in vivo microdialysis reveals a marked decrease in gamma-aminobutyric acid (GABA) release from the CIC cells in deafened animals. The results may have general implications for the mediation of central nervous system plasticity induced by deafferentation of sensory input.  相似文献   

2.
The adult auditory cortex is capable of a plastic reorganization of its tonotopic map after damage to restricted parts of the cochlear sensory epithelium. We examine the precise conditions of cochlear damage required to demonstrate such plasticity in the primary auditory cortex (A1) of the cat and the changes observed in neuronal responses in the A1 which has reorganized in plasticity of the tonotopic map. From these data we attempt to predict the conditions required for similar plasticity to occur in humans after cochlear damage.  相似文献   

3.
Classical conditioning induces frequency-specific receptive field (RF) plasticity in the auditory cortex after relatively brief training (30 trials), characterized by increased response to the frequency of the CS and decreased responses to other frequencies, including the pretraining best frequency (BF). This experiment determined the development of this CS-specific RF plasticity. Guinea pigs underwent classical conditioning to a tonal frequency, and receptive fields of neurons in the auditory cortex were determined before and after 5, 15, and 30 CS–UCS (unconditioned stimulus) pairings, as well as 1 hr posttraining. Highly selective RF changes were observed as early as the first 5 training trials. They culminated after 15 trials, then stabilized after 30 trials and 1 hr posttraining. The rapid development of RF plasticity satisfies a criterion for its involvement in the neural bases of a specific associative memory. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

4.
In the process of creating a multimodal map of space, auditory-visual neurons in the optic tectum establish associations between particular values of auditory spatial cues and locations in the visual field. In the barn owl, tectal neurons reveal these associations in the match between their tuning for interaural time differences (ITDs) and the locations of their visual receptive fields (VRFs). In young owls ITD-VRF associations can be adjusted by experience over a wide range, but the range of adjustment normally becomes quite restricted in adults. This normal range of adjustment in adults was greatly expanded in owls that had previously learned abnormal ITD-VRF associations as juveniles. Thus, the act of learning abnormal associations early in life leaves an enduring trace in this pathway that enables unusual functional connections to be reestablished, as needed, in adulthood, even when the associations represented by these connections have not been used for an extended period of time.  相似文献   

5.
Learning alters receptive field (RF) tuning in the primary auditory cortex (ACx) to emphasize the frequency of a tonal conditioned stimulus. RF plasticity is a candidate substrate of memory, as it is associative, specific, discriminative, rapidly induced, and enduring. The authors hypothesized that it is produced by the release of acetylcholine in the ACx from the basal forebrain (BasF), caused by presentation of reinforced but not nonreinforced conditioned stimuli. Waking adult male Hartley guinea pigs (n?=?16) received 1 of 2 tones followed by BasF stimulation, in a single session of 30 pseudo-random order trials each. RFs from neuronal discharges before and after differential pairing revealed the induction of predicted plasticity, as well as increased responses to the paired tone and decreased responses to the unpaired tone. Thus, highly specific, learning-induced RF plasticity in the ACx may be produced by activation of the BasF by a reinforced conditioned stimulus. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

6.
"The spiral aftereffect technique was administered to 81 children ranging in age from 48 to 71 months. No children below 55 months reported the aftereffect, while all of those above 69 months were able to report the phenomenon. Mental age was found to bear a more direct relationship to perception of the aftereffect than chronological age. The results of this study lend support to the hypothesis that children below a certain age level, presumably because of insufficient neural maturation, exhibit some behaviors similar to those of brain injured adults." (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

7.
Prepulse inhibition was used with C57BL/6J (C57) mice to assess behavioral-perceptual correlates of previously demonstrated physiological changes in the central auditory system associated with age-related hearing loss. Normal-hearing CBA/CaJ (CBA) mice and DBA/2J (DBA) mice, which exhibit extremely rapid hearing loss, were also tested. Tone prepulse stimuli (S1s) were presented 100 ms prior to a startle-evoking noise stimulus (S2), and a decrease in startle amplitude served as the measure of startle modification. As high-frequency hearing declined in C57 mice between 1 and 12 mo of age, the efficacy of lower-frequency S1s was significantly enhanced. CBA mice exhibited no age-related changes in startle modification. DBA mice exhibited changes similar to those observed in C57s but at an accelerated rate. The enhanced behavioral saliency of low and middle frequencies in C57 and DBA mice appears to be a consequence of neural plasticity in the central auditory system. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

8.
Knowledge about body composition is important in metabolic and nutritional studies. In this cross-sectional study the body composition of 403 healthy white Dutch children and adolescents was evaluated by using dual-energy X-ray absorptiometry (DXA). Possible determinants of body composition were analyzed. In 85 subjects the results of bioelectrical impedance analysis (BIA) were compared with DXA. Fat mass, lean tissue mass, and bone mineral content were greater in older boys and girls. Percentage body fat was greater in older girls but not in boys and it was higher in girls than in boys at all ages. From the age of 14 y boys had higher lean tissue mass and bone mineral content than girls. Tanner stage had a significant relation with body composition in both sexes. Percentage body fat was lower in boys in stage 4 than in stage 3 and was higher in consecutive Tanner stages in girls. After adjustment for age, Tanner stage was significantly positively related to lean tissue mass and bone mineral content in boys and girls and to percentage body fat and fat mass in girls. The profession of the parents and the education of the father had a significant negative correlation with percentage body fat and fat mass in girls (P < 0.01). Physical activity was related to lean tissue mass (P = 0.001) but not to fat mass in boys after adjustment for age. A high correlation and a small difference was found between lean body mass by BIA and lean tissue mass by DXA. Body composition in healthy Dutch children and adolescents is related to age, sex, Tanner stage, socioeconomic status, and physical activity.  相似文献   

9.
Classical conditioning is known to induce frequency-specific receptive field (RF) plasticity in the auditory cortex (ACx). This study determined the effects of discrimination training on RFs at 2 levels of task difficulty. Single unit and cluster discharges were recorded in the ACx of adult guinea pigs trained in a tone-shock frequency discrimination paradigm (30 intermixed trials each of positive CS [CS+]-shock and negative CS [CS–] alone) with behavioral performance indexed by the cardiac deceleration CR. After training in an easy task in which Ss developed discriminative CRs, they were trained in a difficult task (reduced frequency distance between CS+ and CS–) in which they failed to discriminate. However, frequency-specific RF plasticity developed at both levels of task difficulty. Responses to the frequency of the CS+ were increased, whereas responses to other frequencies, including the CS– and the prepotent best frequency (BF) were reduced. In many cases, tuning was shifted such that the frequency of the CS+ became the new BF. The effects were present or stronger after a 1-hr retention interval. The role of RF plasticity in the ACx is discussed for behavioral performance and information storage. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

10.
Comments on H. Wallach's (see record 1986-08161-001) analysis of visual motion perception derived from primary or learned stimulation by presenting experimental findings from a variety of studies that contradict the conception of image displacement as primary and by suggesting that perception of object movement can be derived from configurational changes alone. (13 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

11.
The authors examined center-surround effects for motion perception in human observers. The magnitude of the motion aftereffect (MAE) elicited by a drifting grating was measured with a nulling task and with a threshold elevation procedure. A surround grating of the same spatial frequency, temporal frequency, and orientation significantly reduced the magnitude of the MAE elicited by adaptation to the center grating. This effect was bandpass tuned for spatial frequency, orientation, and temporal frequency. Plaid surrounds but not contrast-modulated surrounds that moved in the same direction also reduced the MAE. These results provide psychophysical evidence for center-surround interactions analogous to those previously observed in electrophysiological studies of motion processing in primates. Collectively, these results suggest that motion processing, similar to texture processing, is organized for the purpose of highlighting regions of directional discontinuity in retinal images. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

12.
A sound presented in temporal proximity to a light can alter the perceived temporal occurrence of that light (temporal ventriloquism). The authors explored whether spatial discordance between the sound and light affects this phenomenon. Participants made temporal order judgments about which of 2 lights appeared first, while they heard sounds before the 1st and after the 2nd light. Sensitivity was higher (i.e., a lower just noticeable difference) when the sound-light interval was ~100 ms rather than ~0 ms. This temporal ventriloquist effect was unaffected by whether sounds came from the same or a different position as the lights, whether the sounds were static or moved, or whether they came from the same or opposite sides of fixation. Yet, discordant sounds interfered with speeded visual discrimination. These results challenge the view that intersensory interactions in general require spatial correspondence between the stimuli. (PsycINFO Database Record (c) 2011 APA, all rights reserved)  相似文献   

13.
It is well established that the functional organization of adult sensory cortices, including the auditory cortex, can be modified by deafferentation, sensory deprivation, or selective sensory stimulation. This paper reviews evidence establishing that the adult primary auditory cortex develops physiological plasticity during learning. Determination of frequency receptive fields before and at various times following aversive classical conditioning and instrumental avoidance learning in the guinea pig reveals increased neuronal responses to the pure tone frequency used as a conditioned stimulus (CS). In contrast, responses to the pretraining best frequency and other non-CS frequencies are decreased. These opposite changes are often sufficient to shift cellular tuning toward or even to the frequency of the CS. Learning-induced receptive field (RF) plasticity (i) is associative (requires pairing tone and shock), (ii) highly specific to the CS frequency (e.g., limited to this frequency +/- a small fraction of an octave), (iii) discriminative (specific increased response to a reinforced CS+ frequency but decreased response to a nonreinforced CS- frequency), (iv) develops extremely rapidly (within 5 trials, the fewest trials tested), and (v) is retained indefinitely (tested to 8 weeks). Moreover, RF plasticity is robust and not due to arousal, but can be expressed in the deeply anesthetized subject. Because learning- induced RF plasticity has the major characteristics of associative memory, it is therefore referred to as "physiological memory". We developed a model of RF plasticity based on convergence in the auditory cortex of nucleus basalis cholinergic effects acting at muscarinic receptors, with lemniscal and nonlemniscal frequency information from the ventral and magnocellular divisions of the medial geniculate nucleus, respectively. In the model, the specificity of RF plasticity is dependent on Hebbian rules of covariance. This aspect was confirmed in vivo using microstimulation techniques. Further, the model predicts that pairing a tone with activation of the nucleus basalis is sufficient to induce RF plasticity similar to that obtained in behavioral learning. This prediction has been confirmed. Additional tests of the model are described. RF plasticity is thought to translate the acquired significance of sound into an increased frequency representation of behaviorally important stimuli.  相似文献   

14.
Classical conditioning produces frequency-specific plasticity of receptive fields (RFs) of single neurons in cat auditory cortex (D. M. Diamond and N. M. Weinberger; see record 1987-14817-001). In this article we show that although plasticity may be observed during both training trials and determination of RFs, it is usually expressed in a qualitatively different form (e.g., decreased response during conditioning vs. increased response to this same conditioned stimulus in the postconditioning RF). This differential expression of learning-induced plasticity provides evidence for a role of context in neurophysiological mechanisms of learning in auditory cortex. A model of cortical neurons functioning within a mosaic of influences is presented. The Functional Mosaic model views the induction and expression of plasticity as separate processes. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

15.
16.
The hot deformation behavior and microstructure evolution of high manganese transformation induced plasticity steel(Fe - 20Mn - 3Si - 3Al) were investigated by using hot compression test in a temperature range from 800℃to 1 050℃and strain rate ranging from 0.01 s~(-1) to 5.0 s~(-1).The effects of temperature,strain rate,and true strain on the flow behavior and microstructures of high manganese transformation induced plasticity steel were discussed.The results show that the dynamic recrystallization occur...  相似文献   

17.
18.
Classical tone conditioning shifts frequency tuning in the auditory cortex to favor processing of the conditioned stimulus (CS) frequency versus other frequencies. This receptive field (RF) plasticity is associative, highly specific, rapidly acquired, and indefinitely retained—all important characteristics of memory. The investigators determined whether RF plasticity also develops during instrumental learning. RFs were obtained before and up to 24 hr after 1 session of successful 1-tone avoidance conditioning in guinea pigs. Long-term RF plasticity developed in all subjects (N?=?6). Two-tone discrimination training also produced RF plasticity, like classical conditioning. Because avoidance responses prevent full elicitation of fear by the CS, long-term RF plasticity does not require the continual evocation of fear, suggesting that neural substrates of fear expression are not essential to RF plasticity. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

19.
Paired-pulse plasticity is typically used to study the mechanisms underlying synaptic transmission and modulation. An important question relates to whether, under physiological conditions in which various opposing synaptic properties are acting in parallel, the net effect is facilitatory or depressive, that is, whether cells further or closer to threshold. For example, does the net sum of paired-pulse facilitation (PPF) of excitatory postsynaptic potentials (EPSPs), paired-pulse depression (PPD) of inhibitory postsynaptic potentials (IPSPs), and the hyperpolarizing slow IPSP result in depression or facilitation? Here we examine how different time-dependent properties act in parallel and examine the contribution of gamma-aminobutyric acid-B (GABAB) receptors that mediate two opposing processes, the slow IPSP and PPD of the fast IPSP. Using intracellular recordings from rat CA3 hippocampal neurons and L-II/III auditory cortex neurons, we examined the postsynaptic responses to paired-pulse stimulation (with intervals between 50 and 400 ms) of the Schaffer collaterals and white matter, respectively. Changes in the amplitude, time-to-peak (TTP), and slope of each EPSP were analyzed before and after application of the GABAB antagonist CGP-55845. In both CA3 and L-II/III neurons the peak amplitude of the second EPSP was generally depressed (further from threshold) compared with the first at the longer intervals; however, these EPSPs were generally broader and exhibited a longer TTP that could result in facilitation by enhancing temporal summation. At the short intervals CA3 neurons exhibited facilitation of the peak EPSP amplitude in the absence and presence of CGP-55845. In contrast, on average L-II/III cells did not exhibit facilitation at any interval, in the absence or presence of CGP-55845. CGP-55845 generally "erased" short-term plasticity, equalizing the peak amplitude and TTP of the first and second EPSPs at longer intervals in the hippocampus and auditory cortex. These results show that it is necessary to consider all time-dependent properties to determine whether facilitation or depression will dominate under intact pharmacological conditions. Furthermore our results suggest that GABAB-dependent properties may be the major contributor to short-term plasticity on the time scale of a few hundred milliseconds and are consistent with the hypothesis that the balance of different time-dependent processes can modulate the state of networks in a complex manner and could contribute to the generation of temporally sensitive neural responses.  相似文献   

20.
After fear conditioning to a tone, rats received nonawakening presentations of the tone alone during slow-wave sleep (SWS) episodes. Multiunit activity was recorded in the medial part of the medial geniculate (MGm) and in the primary auditory cortex (ACx). Although tone-evoked responses were increased in MGm and ACx during the 3 conditioning sessions, group data failed to show any significant changes during SWS. Nonetheless, the few recordings (5/29) that exhibited the strongest conditioned responses during wakefulness expressed enhanced responding during SWS. Compared with previous data obtained in MGm during paradoxical sleep, associative plastic changes were less easily expressed during SWS. These results are discussed with regard to functional changes that occur in the thalamocortical system across vigilance states. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号