首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
颗粒增强铝基复合材料摩擦磨损性能研究   总被引:2,自引:0,他引:2  
对颗粒增强铝基复合材料及其基体与 4 0Cr钢摩擦材料组成的摩擦副的摩擦磨损特性进行了对比试验研究 ,并采用SEM对颗粒增强铝基复合材料及其基体磨损表面进行了观察 ,探讨了其磨损机理。试验表明 :复合材料具有较稳定的摩擦系数、低的磨损率 ;复合材料的主要磨损形式是磨粒磨损 ,基体材料的主要磨损形式是粘着磨损。  相似文献   

2.
纳米复合材料摩擦磨损性能研究进展   总被引:2,自引:0,他引:2  
介绍了纳米复合材料的组成、分类和制备方法,评述了纳米复合材料的摩擦磨损性能研究进展,总结了纳米复合材料摩擦学性能的主要影响因素,分析了纳米复合材料的摩擦磨损机制,指出了当前纳米复合材料摩擦学研究领域的发展趋势和有待于研究和解决的问题.  相似文献   

3.
纳米高岭土和石墨填充PTFE复合材料摩擦磨损性能   总被引:1,自引:0,他引:1  
采用模压法制备石墨和纳米高岭土填充的聚四氟乙烯(PTFE)复合材料,在往复式滑动摩擦磨损试验机上测试了其的干滑动摩擦磨损性能,试验机往复频率为1.0 Hz.用扫描电镜观测和分析试样的磨损表面.结果表明:石墨和纳米高岭土共同填充的PTFE,在改善其耐磨性的同时,又保持了低的摩擦因数,其中含10%高岭土和5%石墨的PTFE复合材料表现最佳,稳定阶段的摩擦因数保持在0.11左右,耐磨性比纯PTFE提高了大约90倍.  相似文献   

4.
Gr和SiC混杂增强铝基复合材料与铸铁的摩擦磨损性能对比   总被引:3,自引:1,他引:2  
对比研究了碳化硅(SiC),石墨(Gr)混杂增强铝硅合金复合材料(Al-Si/SiC+Gr)与铸铁,以及基体铝硅合金的干磨擦磨损性能。  相似文献   

5.
碳化硼增强铝基复合材料的摩擦磨损性能   总被引:1,自引:0,他引:1  
为了比较两种含量不同的碳化硼颗粒增强铝基复合材料的摩擦学性能,将其加工成销试样,在多功能摩擦磨损试验机上分别与钢盘试样进行对比摩擦磨损试验,重点研究了接触载荷和相对滑动速度对两种复合材料摩擦磨损性能的影响.结果表明:碳化硼增强铝基复合材料的磨损量随载荷与相对滑动速度的增大而增大,而摩擦因数随载荷与相对滑动速度的增大而减小,较高碳化硼含量的复合材料的耐磨性能比较低含量的复合材料好.  相似文献   

6.
一种铝基复合材料制动盘用树脂基摩擦材料   总被引:1,自引:0,他引:1  
研制了一种适用于铝基复合材料制动盘的树脂基摩擦材料,测试了其物理力学性能及摩擦磨损性能。结果表明:所研制的摩擦材料具有较好的物理力学性能,各项指标达到了相应的技术要求;与用于铸铁制动盘的摩擦材料相比,具有更高的摩擦因数,更小的磨耗,制动力矩曲线平稳,能更好地适应铝基复合材料制动盘。另外,台架试验结果表明:摩擦副的摩擦磨损性能能够满足200km/h高速列车的要求。  相似文献   

7.
石墨因具有较高的阻尼性能,成为提高铝基复合材料阻尼性能的理想增强体。本文用爆轰合成的纳米石墨粉作为增强体,采用粉末冶金的方法,对纳米石墨(n-G r)-A l-Mg-S i复合材料进行了热压。X射线衍射表明烧结体中出现了Mg2S i强化相,场发射扫描电镜分析表明加入1%(质量分数)纳米石墨可以较好地分散在铝基材料中。通过对其阻尼性能进行研究,表明纳米石墨可以使复合材料的阻尼性能提高10%以上。  相似文献   

8.
本文研究了用机械合金化方法制备出Si3N4/Fe基纳米晶复合粉末,用常规粉末冶金工艺烧结出试样,测试了复合材料的常温摩擦磨损性能,并对其显微组织进行了分析,认为纳米晶的界面确实机改善Si3N4与Fe的结合强度。  相似文献   

9.
综述了近年来有关颗粒增强铝基复合材料磨损性能的研究现状,讨论了影响铝基复合材料摩擦磨损性能的主要因素,对不同条件下的磨损机制进行了总结,展望了今后研究的发展方向,为今后的研究工作提供参考依据。  相似文献   

10.
用M-2000摩擦磨损试验机对纳米碳黑和石墨填充PTFE复合材料进行了摩擦磨损性能研究,用扫描电子显微镜(SEM)对磨损表面进行观察.结果表明:2种碳纳米能够提高PTFE复合材料的耐磨性,其中纳米碳黑填充效果最佳.纳米碳黑和纳米石墨2种碳纳米的最佳添加量分别为7%和5%(质量分数).纳米石墨可以减小PTFE复合材料的摩擦因数,而纳米碳黑使得PTFE复合材料的摩擦因数增大,且含量越高,复合材料摩擦因数增幅越大.结晶型纳米石墨与PTFE基体的相容性较差,而无定形纳米碳黑与PTFE基体的相容性较好.  相似文献   

11.
汽车摩擦材料摩擦磨损性能试验的现状与发展   总被引:1,自引:0,他引:1  
汽车摩擦材料的摩擦磨损性能直接影响车辆行驶的安全性、舒适性和耐久性。工况条件是影响摩擦磨损性能的重要因素。摩擦磨损性能的试验结果将为摩擦材料的配方设计、制造工艺的调整提供依据。因此试验工况的模拟性及测试评价方法的选择显得至关重要。介绍了汽车摩擦材料摩擦磨损性能试验的类型、方法、使用范围及应用现状,对现有不同的试验进行了比较,并对其发展趋势加以总结。  相似文献   

12.
用球磨机械合金化工艺制备Fe3Al粉末,采用粉末冶金工艺,选择不同的烧结温度、烧结压力和保温时间,获得Fe3Al基复合材料的最佳烧结工艺条件。对最佳工艺条件获得的材料的物理机械性能、摩擦磨损性能和微观结构进行分析测试,借助磨损表面扫描图像和能谱分析,分析该材料的磨损形式,并探讨该材料在低速低载和高速重载2种工况条件的磨损机制。结果表明:采用烧结温度为1 100℃,烧结压力为10 MPa下保温30 min的工艺条件烧结的材料有较好的机械性能和摩擦磨损性能。其摩擦磨损机制为:低速低载以疲劳磨损和磨粒磨损为主,高速重载以疲劳磨损和磨粒磨损为主,并伴有轻微的黏着磨损形式。  相似文献   

13.
采用粉末冶金法制备了3%SiC-10%C-87%Cu和10%C-90%Cu两种铜基复合材料,并在销盘式载流摩擦磨损试验机上进行试验,研究了摩擦速度和电流密度对这两种复合材料燃弧率、载流效率以及摩擦因数和磨损率的影响。结果表明:在相同的试验条件下,与C/Cu复合材料相比,SiC/C/Cu复合材料的摩擦因数较大,磨损率较小;燃弧率主要由摩擦材料表面的接触状态及电流密度决定,载流效率受燃弧率的影响较大;当摩擦速度为10~25m·s-1时,两种复合材料的燃弧率均低于10%,载流效率均维持在85%以上,随着摩擦速度增大至30m·s-1,它们的燃弧率均急剧增大,载流效率均急剧降低;随着电流密度增大,两种复合材料的燃弧率均逐渐增大,载流效率均逐渐减小。  相似文献   

14.
纳米和微米La2O3颗粒增强镍基复合镀层的摩擦磨损性能   总被引:1,自引:0,他引:1  
用复合电沉积工艺制备了纳米和微米La2O3颗粒增强镍基复合镀层,在销盘式滑动磨损试验机上考察了复合镀层在干摩擦条件下的摩擦磨损性能,用扫描电子显微镜分析了其磨损机理。结果表明:在干摩擦条件下,纳米La2O3颗粒增强复合镀层的摩擦磨损性能明显优于微米La2O3颗粒增强复合镀层;纳米La2O3增强镍基复合镀层的磨损主要表现为轻微磨粒磨损特征,而微米La2O3增强镍基复合镀层的磨损机制为剥层磨损和磨粒磨损。  相似文献   

15.
研究了挤压铸造制备的5%Ti-Al2O3p/45钢复合材料和Al2O3p/45钢复合材料在不同转速和压力下的摩擦磨损性能。结果表明:两种复合材料的磨损量均随转速和压力的增加而增大,且前者的磨损量更低,其原因是钛在Al2O3颗粒表面生成TiC涂覆层,增强了Al2O3颗粒与45钢基体的界面结合性能,提高了复合材料的耐磨性能;两种复合材料的摩擦因数相当,在0.58~0.92之间,且均随转速和压力的增大而减小。  相似文献   

16.
微米SiCp增强铝基复合材料摩擦磨损性能研究   总被引:5,自引:1,他引:5  
以微米级(14μfm)SiCp和微米级Al粉(100~200目)为原料,采用冷压烧结和热挤压方法制备出不同体积分数的微米SiCp增强Al基复合材料,研究了它的耐磨性能。结果表明在较高载荷下,SiCp的体积分数为1.5%和5.0%的SiCp/Al基复合材料耐磨性比市售挤压态锡青铜QSn6.5—0.4和纯Al高得多,且随SiCp含量增加,复合材料的耐磨性能提高;磨损表面形成Al基体 弥散分布SiCp的理想耐磨组织。  相似文献   

17.
Fe3Al基复合材料抗氧化性能的研究   总被引:1,自引:1,他引:0  
用粉末冶金法制备了Fe3Al基复合材料,对其抗氧化行为和磨损机理进行了分析研究,发现无论是做热氧化性实验,还是高速重载摩擦磨损实验,它的抗氧化性行为主要是在Fe3Al颗粒表面形成氧化铝保护膜,该膜阻断氧原子的进一步侵入而提高了该材料的抗氧化性,该材料的主要磨损形式是磨粒磨损。  相似文献   

18.
纳米颗粒增强铜基摩擦材料的摩擦学性能   总被引:2,自引:0,他引:2  
基于粉末冶金法分别制备了纳米氮化铝和纳米石墨增强铜基摩擦材料,研究了纳米颗粒对铜基摩擦材料的摩擦磨损和耐热性能的影响规律.采用扫描电子显微镜(SEM)分析了材料的微观结构和磨损形貌,并利用惯性摩擦磨损试验机考核其摩擦学性能.实验结果表明:与未添加纳米颗粒的摩擦材料相比,添加纳米氮化铝和纳米石墨的摩擦材料的摩擦因数高而稳定,且随接合次数增加无明显衰退现象;耐磨性能分别提高了25%和11%;耐热性能分别提高了18%和25%.未添加纳米颗粒的摩擦材料的磨损机制主要为犁沟式磨料磨损,纳米氮化铝和纳米石墨能减少摩擦材料的磨料磨损,从而增强了摩擦材料的耐磨性.实验结果显示,纳米氮化铝和纳米石墨可显著提高铜基摩擦材料的摩擦学性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号