首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At two phosphate (P) responsive sites in hill country the effectiveness of Sechura phosphate rock (SPR) as a direct application P fertilizer for permanent pasture was evaluated. Sechura was applied at two rates, in three different application strategies. The treatments were 16.7 and 50 kgP ha–1 annually, 25 and 75 kgP ha–1 biennially, and 50 and 150 kgP ha–1 triennially giving a total of 50 and 150 kgP ha–1, respectively, over three years. Single superphosphate (SSP) served as the standard P fertilizer. A comparison was also made between SPR and Chatham Rise phosphorite (CRP), another reactive PR. Total pasture and legume production and P uptake by pasture was measured with all fertilizer treatments over a three year period.In the year of application, SPR was as effective as SSP in stimulating total pasture and legume production and P uptake by pasture. This reflects the very reactive nature of this PR. In the second and third years of measurement, SPR did not show superior residual efffects to SSP. The ability of CRP to stimulate legume growth more than SPR in the second year following application demonstrates the danger of generalizing about the residual effects of reactive PR materials. Of the application strategies evaluated, a biennial appplication of 25 kgP ha–1 as SPR maintained legume growth at a higher level than a smaller (16.7 kgP ha–1) annual dressing. The biennial strategy also increased total pasture yield, in addition to legume production to a greater extent in the second and third years than a single (50 kgP ha–1) triennial application.  相似文献   

2.
Cadmium (Cd), a potentially toxic heavy metal for humans and animals, accumulates in the liver and kidneys of older animals grazing New Zealand and Australian pastoral soils. Phosphorus (P) fertiliser is the major input of Cd into these farming systems. A study was conducted to evaluate the effects, over 10 years, of annual application (30 kg P ha–1 yr–1) of four forms of P fertilisers having different solubilities and Cd contents [41, 32, 10 and 5 g Cd g–1 for North Carolina phosphate rock (NCPR), single superphosphate (SSP), diammonium phosphate (DAP) made from low Cd phosphate rocks and Jordan phosphate rock (JPR) respectively] on soil and herbage Cd concentrations. Ten years of fertiliser application caused a marked increase in surface soil Cd concentrations. Total soil Cd was significantly higher in SSP and NCPR treatments compared to control (no P fertiliser), JPR and DAP treatments in the 0–30 and 30–75 mm soil depths. Plant-available Cd (0.01 M CaCl2 extractable Cd) was higher in SSP treatments than in control and other fertiliser treatments. Chemical analysis of herbage samples showed that there was no significant difference in Cd concentration in pasture grasses between treatments in the second year of the trial but in the eighth and tenth year, plots fertilised with SSP and NCPR had significantly higher Cd in pasture grasses in most of the seasonal cuts compared to control, JPR and DAP. Cadmium recovery by both grasses and clover was less than 5% of Cd applied in fertiliser. Clover Cd concentration and yield were much lower than those for grass and therefore its contribution to pasture Cd uptake was very low (< 7%). A strong seasonal effect on grass Cd concentration, which is inversely related to pasture growth rate, was observed in all three sampling years — Cd concentration was highest during autumn and lowest in spring. Total Cd contents of the fertilisers and their rate of dissolution rather than soil pH [pH (H2O) at 30–75 mm depth of 5.39, 5.20, 5.11 and 5.36 for NCPR, SSP, DAP and JPR treatments respectively]influenced soil and herbage Cd. These results showed that the use of P fertilisers with low Cd contents will reduce herbage Cd levels and has the potential of reducing Cd levels in grazing animals and their products.  相似文献   

3.
Pasture production, phosphorus (P) concentration, and P uptake by mixed pasture following addition in the autumn of 50 and 100 kgP ha–1 as single superphosphate (SSP), triple superphosphate (TSP) and Sechura phosphate rock (SPR), and of 50 kgP ha–1 of Chatham Rise phosphorite (CRP) were measured for one year on a Wainui silt loam (Typic Dystrochrept) and Tokomaru silt loam (Typic Fragiaqualf). A sharp increase was measured in the P concentration of mixed pasture immediately following the application of 50 and 100 kg P ha–1 as either SSP or TSP at both sites. However, this increase was not accompanied by an increase in pasture production. In contrast, the application of 50 kgP ha–1 as either SPR or CRP resulted in only small initial increases in the P concentration of mixed pasture, as did the addition of 100 kgP ha–1 as SPR at both sites. The potential P losses by animal transfer in dung, which could result from the use of these four P fertilisers, were calculated using a P cycle constructed for intensively grazed, steep hill country pasture. Potential losses of fertilizer P, calculated as a percentage of fertilizer P added, were 7–14% for SSP and TSP, and 4–5% for SPR and CRP in the first year at the two sites. The implications of these results to the efficiency of P fertilizer use are discussed.  相似文献   

4.
Partially acidulated phosphate fertilizers are manufactured either by direct partial acidulation of phosphate rocks (PRs) with sulphuric and/or phosphoric acid (directly acidulated PAPR) or indirectly by mixing reactive phosphate rocks (RPRs) with single superphosphate (SSP-RPR mixture). This form of low cost fertilizer manufacture is suitable for improving the agronomic value of unreactive PRs or production of high analysis fertilizers that can have agronomic values similar to fully acidulated phosphate fertilizers.The solubility characteristics of the directly acidulated PAPRs are affected by the type, composition and concentration of the acid used for acidulation, degree of acidulation, nature and fineness of PR and the method of manufacture. In general, partial acidulation with phosphoric acids which contain minimum amounts of metallic impurities acidulates more PR and results in more soluble P in the product. In the case of SSP-RPR mixtures made by adding RPR to immature SSP, the nature of PR used for SSP manufacture and the time of addition of RPR to ex-den SSP mixture affects the quality of the product. In order to minimize the selective reaction of the RPR with residual acid present in the ex-den SSP reaction mixture, RPR should not be added until PR acidulation (used for SSP) is essentially complete.The agronomic value of partially acidulated phosphate fertilizers is affected by the amount of water soluble P and the solubility of residual PR. None of the single extraction tests such as 2% citric acid, 2% formic acid and neutral ammonium citrate appear to be appropriate as indicators of plant available P in these fertilizers. Double extraction procedures which remove both the soluble P and the residual P have been investigated, but need to be correlated with agronomic data before they can be adopted as quality tests.  相似文献   

5.
Ground samples of Nauru (N), Christmas Island A (X), Jordan (J) or North Carolina (NC) phosphate rocks (PRs) were acidulated with32P spiked sulphuric acid to produce single superphosphate (SSP) reaction mixtures. Subsequently, single superphosphatereactive phosphate rock (SSP-RPR) mixtures were manufactured by adding reactive phosphate rock (RPR) as either ground or unground NCPR or ground JPR to SSP reaction mixtures that had been denned for either 22 or 47 minutes after acid addition. The solubility of P in the final SSP-RPR products was assessed either by extraction with water, 2% citric acid, 2% formic acid or 1M neutral ammonium citrate (NAC), or by calculation of the exchangeable P content of the fertilizer by isotopic dilution techniques. The measurement of exchangeable P allowed calculation of the amounts of acidulated P in the ex-den SSP and the amount of RPR P acidulated on addition to ex-den SSP containing free phosphoric acid.Among the PRs used for SSP manufacture, the highest degree of acidulation at the ex-den stage was obtained for NCPR (92%) and the lowest was obtained for XPR (75%). As a consequence, the presence of XPR in the SSP reaction mixture decreased the amount of exchangeable P in the SSP-RPR mixtures. Whereas initially the conversion of PR P increased with time of acidulation at 22 minutes and 47 minutes (i.e. the time of addition of RPR) the differences in the degree of acidulation of PR in the ex-den SSP were not large and hence had no significant effect on the extractability of P in the SSP-RPR mixtures.The nature of the RPR added to the ex-den SSP reaction mixture had a significant effect on the solubility of P in the SSP-RPR mixtures. SSP-RPR mixtures with added unground NCPR or ground JPR had lower P solubility than when ground NCPR was added. RPR P constituted between 38 and 46% of the total P in the SSP-RPR mixtures and at acid/PR (A/R) ratios of 0.60 to 0.70, between 28 to 49% of the RPR P was acidulated by the free acid in the SSP reaction mixture during manufacture.The results also indicate that RPR mixtures made using ex-den SSP made from unreactive PRs will always contain more unreactive PR residue than those made with mature SSP. However, given the practical difficulties of producing the SSP-RPR mixtures with mature SSP, denning times should be extended for as long as practicably possible.  相似文献   

6.
Phosphate rocks partially acidulated either with H3PO4 or H2SO4 were compared against SSP or TSP as phosphate fertilizers for permanent pasture. Eleven field trials were conducted over periods of up to 6 yrs. Fertilizers were surface applied annually. Initial soil pHw values ranged from 5.5–6.3 and Soil P retention from 25% to 97%. The PRs used for partial acidulation were unground or ground North Carolina PR, ground Khouribga PR, and a blend of ground PRs of North Carolina, Arad and Khouribga PRs. From the DM yields, fertilizer substitution values were calculated: fertilizer substitution value was the ratio of total P applied as superphosphate to total P as PAPR required to produce the same DM yield.Rates of dissolution of the PR component of PAPRs were also determined in soils collected from two trials.Agronomic results demonstrated that 30% acidulated phosphoric PAPRs (about 50% of total P as water-soluble P) were as effective as TSP, when the PR acidulated was from unground North Carolina PR. Results from one field trial indicated that when PAPR was from ground North Carolina PR, 20% acidulated product (water-soluble P 30–40% of total P) was equally effective as TSP. Replacement of ground North Carolina PR by a less reactive Khouribga PR did not appear to decrease the yield. Results indicated that per unit P released into soil solution, PAPRs were more efficient fertilizers than TSP. With annual applications, fertilizer substitution value of PAPR 30% tended to increase with time.Sulphuric PAPRs prepared from North Carolina PR were generally inferior to phosphoric PAPRs containing similar amounts of water-soluble P. This was attributed to the presence of CaSO4 coatings.Abbreviations DM Dry matter - PAPR Partially acidulated phosphate rock - PR Phosphate rock - SSP Single superphosphate - TSP Triple superphosphate  相似文献   

7.
The agronomic effectiveness of unground North Carolina phosphate rock (PR) and partially acidulated phosphate rocks (PAPR) prepared by acidulation of the PR with 30%, 40% and 50% of the phosphoric acid needed for complete acidulation, was determined in a 4 year field experiment on permanent pastures. The soil developed from volcanic ash, and was highly P retentive. The rate of dissolution in soil of the PR component in PAPR and of PR applied directly was measured, together with bicarbonate extractable P. The priming effect of the monocalcium phosphate (MCP) component of PAPR on root growth was also investigated.Pasture yields showed that even the 30% acidulated PAPR was as effective as fully acidulated triple superphosphate (TSP), mainly due to the high reactivity of the PR used. The 50% acidulated PAPR tended to be superior to TSP. Soluble P in PAPR caused a marked increase in root proliferation, and dry matter yields were greater than predicted from the amounts of MCP and PR in PAPR. Directly applied PR was inferior to TSP in years 1 and 2 but was equal in year 4. (There was no pasture response to application of P fertilizers in year 3.)Dissolution rates of the PRs were determined applying a cubic model to PR dissolution data. The rate of dissolution increased with increasing acidulation and this is tentatively ascribed to increased root proliferation around PAPR granules and acidification of the clover rhizosphere during nitrogen fixation.  相似文献   

8.
The agronomic effectiveness of a partially acidulated phosphate rock (PAPR) was measured in a field experiment with sorghum (Sorghum bicolor cv. CSH-6) in a shallow Alfisol at the ICRISAT farm, Patancheru (Hyderabad), India. The experiment compared PAPR with single superphosphate. The PAPR was made by acidulating an indigenous Indian phosphate rock (Mussoorie) with H2SO4 at 50% acidulation level. P response was evaluated at a single relatively high N rate (120 kg ha–1) with five rates of P (0, 2.2, 4.4, 8.8, and 17.6 kg P ha–1). A significant response to P was obtained at rates up to 17.6kg P ha–1.There was no significant difference due to source of P in terms of sorghum grain yield or total P uptake. Both Olsen and Bray 1 soil tests underestimated P availability from PAPR with respect to that from SSP.A rapid rate of P uptake was observed during grain filling to maturity (81–102 days), when 40% of the total P was taken by the plant. The internal efficiency of both P sources was the same.  相似文献   

9.
The effect of additon of reactive phosphate rock (RPR — North Carolina) on the degree of acidulation of unreactive phosphate rocks (PRs — Nauru and Christmas Island A) during the manufacture of single superphosphate (SSP) was examined using32P in isotopic dilution studies. Acidulation of unreactive PR during SSP manufacture continued through denning, granulation and drying. Even after 3 hours drying, between 20 and 30% of the total P remained as free phosphoric acid in the reaction mixture. The addition of North Carolina phosphate rock (NCPR) to ex-den SSP reaction mixture (3:7 NCPR:SSP reaction mixture) preferentially consumed the free phosphoric acid remaining in the reaction mixture. This resulted in reduced acidulation of the unreactive PR in the reaction mixture and partial acidulation (10–23%) of the RPR. Hence the SSP-RPR mixture contains more residual, unreactive PR than is present in SSP.The extent of partial acidulation of the RPR when mixed with SSP was determined by the nature of free acid remaining in the SSP reaction mixture, which in turn is affected by the type of unreactive PR used for SSP manufacture. The free acid in the Christmas Island A reaction mixture contained approximately 8 and 12 times as much Fe and Al respectively as that in the Nauru reaction mixture, and was only half as effective at converting the P in RPR to soluble P. Unless made with extended denning times and carefully chosen PR, SSP-RPR mixtures can contain (a) undesirable amounts of unreactive PR residues, and (b) low quality partially acidulated RPR, both of which have low agronomic value.  相似文献   

10.
More than in the case of the other major fertiliser elements the performance of phosphorus in fertilisers in dependent on the state of chemical combination of the element. As distinct from typical American practice where fully acidulated fertilisers are emphasised, some other countries have moved in part to production of materials of less than full acidulation where some reliance is placed on the reactivity of the original phosphate rock. Solutions of various aliphatic acids and their salts have been used as tests for the availability of phosphorus in fully acidulated fertilisers and, to a degree, for phosphate rocks themselves. Less than fully acidulated products are at present assessed in the same way as fully acidulated materials, but in this and other evaluations problems and anomalies arise which are discussed within the framework of a number of fertiliser systems. Analytical data are adduced which illustrate the effects of some extraneous cations on the results achieved which conflict with some previous opinions. Research towards a fuller understanding of the subject is suggested.  相似文献   

11.
A glasshouse study was conducted to determine the influence of soil pH on the agronomic effectiveness of partially phosphoric (Phos-PAPR) and partially sulphuric (SA-PAPR) acidulated phosphate rocks (PR). For Phos-PAPR ground North Carolina PR (NCPR) was acidulated with 10, 30 and 50% of acid needed for complete acidulation. For SA-PAPR a blend of NCPR, Arad and Khouribga PRs were acidulated with 60% of the acid needed. The relative agronomic effectiveness of these PAPRs were compared with superphosphate (SSP) and ground NCPR. A highly phosphate (P) retentive and P deficient pasture soil was used. Prior to addition of fertilizers to soil, the pH of soil was adjusted to 5.1 (initial soil pH) 5.4, 5.7 and 6.1 by applying varying amounts of Ca(OH)2. Ryegrass (Lolium perenne) was grown as the test plant over a period of eight months. Fertilizers were applied at three rates plus control. Soil pH was monitored and continuously adjusted to the desired levels throughout the experimental period.The dry matter yields and P uptake in SSP treated pots were not influenced by soil pH. With increasing soil pH, agronomic performance of Phos-PAPRs and NCPR significantly (P<0.01) decreased but that of SA-PAPR was not affected. On the basis of per unit water-soluble P applied, uptake of P by plants was greater from PAPRs than SSP. Using the P uptake values of SSP and NCPR (which was used to prepare the PAPRs), the dissolution of P from the residual PR component of the PAPRs were calculated. The residual PR component of the Phos-PAPRs apparently dissolved in greater quantities than unacidulated NCPR. Dissolution of the residual PR was enhanced with increasing degree of acidulation. However, in the case of SA-PAPR, the agronomic performance of the PAPR was mostly dependent on the water-soluble P component of the PAPR. The uptake of P from the residual PR component of the SA-PAPR was insignificant.  相似文献   

12.
Partially acidulated phosphate rocks (PAPRs) are manufactured by acidulation of PRs with less than the stoichiometric amounts of, usually, phosphoric or sulphuric acids. Products of similar composition to PAPRs are also prepared by cogranulating superphosphate with PRs. For most crops the agronomic value of PAPRs is determined by the availability to plants of their water-soluble P as well as their PR P component. The acid unreacted PR present in the directly acidulated PAPR, is considered to be less reactive than the original PR. This is probably the result of surface coatings of chemical compounds formed during acidulation. Under some soil conditions, in the presence of plants, the PR component probably dissolves faster than the original PR. For seasonal crops, except for fast growing ones such as squash (Cucurbita maxima), reactive PRs partially acidulated so that the final products contain about 50% of its total P in water-soluble form, are generally as effective as fully acidulated superphosphate. For permanent pastures the water P content may be reduced to about 40% of total P without reducing their agronomic effectiveness of the product. In medium P retentive soils pH seems to have little or no influence on the agronomic effectiveness of PAPRs. In highly P retentive soils increasing soil pH reduces the agronomic effectiveness of phosphoric PAPRs apparently by reducing the solubility of the PR component of PAPRs. Even at low pH the dissolution of unreacted PR in sulphuric PAPRs is less than that in phosphoric PAPRs, probably due to the possible coating of calcium sulphate on the residual PR in sulphuric PAPRs. Results on the agronomic effectiveness of PAPRs prepared from unreactive rocks were highly variable and no generalisation could be made regarding the degree of acidulation needed for the products to be consistently effective. Single superphosphate (SSP) cogranulated with reactive rocks (SSP/PR) was agronomically less effective than SSP, and also than phosphoric PAPRs of similar water-soluble P.  相似文献   

13.
The nonacidulated P fraction of partially acidulated phosphate rocks (PAPR) was obtained by extraction with alkaline ammonium citrate solution. Investigations on this unacidulated rock residues using standard analytical techniques and electronbeam microanalysis showed a surface coating with highly increased fluorine content surrounding the unreacted phosphate rock particles. The coating may be responsible for low reactivity of the residues and their inferior agronomic effectiveness as compared to the original mother rock phosphate. Furthermore, the existence of dicalciumphosphate and Fe—Al—P compounds in PAPR products make solubility tests based on alkaline ammonium citrate appropriate to gauge the acidulated and easily plant available P fraction. Only after the removal of these compounds with citrate solution is an assessment of the potential agronomic value of the nonacidulated rock residues in 2% formic acid possible.  相似文献   

14.
Partial acidulation of phosphate rock (PR) or compaction of PR with soluble P fertilizers can improve the usefulness of unreactive PR for use as P fertilizer. A greenhouse study was conducted to evaluate nonconventional phosphate fertilizers derived from a low reactive Sukulu Hills PR from Uganda. Raw PR (which contained 341.0 g kg–1 Fe2O3), beneficiated or concentrate PR, partially acidulated PR (PAPR) and PR compacted with triple superphosphate (TSP) were evaluated. Compacted materials had a P ratio of PR:TSP = 50:50. PAPR materials were made by 50% acidulation with H2SO4. TSP was used as a reference fertilizer. Fertilizers were applied to an acidic (pH = 5.4) Hiwassee loam (clayey, kaolinitic, thermic Rhodic Kanhapludults) at rates of 0, 50, 100, 200, 300 and 400 mg P kg–1 soil. Two successive corn (Zea mays L.) crops were grown for 6 weeks. Compacted concentrate PR + TSP and raw PR + TSP were 94.4 and 89.7% as effective as TSP, respectively, in increasing dry-matter yields for the first corn crop. PAPR from the concentrate was 54.8% as effective as TSP. Raw PR, concentrate PR and the PAPR from the raw PR were ineffective in increasing dry-matter yields. The same trends were obtained when P uptake was used to compare effectiveness. Ineffectiveness of the raw PR and its corresponding PAPR was attributed to a high Fe2O3 content in the raw PR. Bray I and Pi paper were found to be nearly equally suitable at estimating available P in the soils treated with responsive fertilizer materials. Mehlich 1 overestimated available P in soil treated with raw PR, concentrate PR or the PAPR from the raw PR.  相似文献   

15.
The literature comparing the efficiency of partially acidulated phosphate rock fertilisers with that of a single or triple superphosphate is briefly summarised and found to be conflicting. Various theories purported to explain why partially acidulated phosphate rock products are as efficient are examined. An alternative hypothesis, which appears to reconcile the conflicting evidence, is presented. This depends in part on the dissolution of the phosphate rock component of a partially acidulated product in the soil; the factors influencing the dissolution of phosphate rock in the soil are reviewed in relation to the conflicting statements about the efficiency of partially acidulated phosphate rock products.  相似文献   

16.
Partially acidulated phosphate rock (PAPR) has been shown to be an effective source of P for plants grown on acid soils. Less information in available, however, regarding the effect of the phosphate rock (PR) source on the solubility and agronomic effectiveness of PAPR.The effect of Fe2O3 + Al2O3 content in PR on the quality of PAPR produced was investigated in this study. Nine sources of PR from Africa, Latin America, and the United States, representing a range of Fe2O3 + Al2O3 from 0.7% to 12.4%, were used. In a single-step process, the finely ground PRs were partially acidulated with H2SO4 at the 30% or 50% acidulation level and granulated (–3.35 + 1.18 mm or –6 + 14 mesh). It was found that the water-soluble P content in PAPR decreased with increasing Fe2O3 + Al2O content in the PR used. Apparently, the presence of Fe2O3 + Al2O3 resulted in a reversion of some of the water-soluble P to citrate-soluble P and sometimes even to citrate-insoluble P.A short-term (6 weeks) greenhouse study was conducted to evaluate crop response to PAPRs and single superphosphate (SSP); maize, the test crop, was grown on an acid soil (pH 4.5)—Hartsells silt loam (Typic Hapludults). The agronomic effectiveness of PAPRs with respect to SSP (in terms of dry-matter yield of maize) decreased with increasing Fe2O3 + Al2O3 content in PRs. Phosphorus uptake by maize from PAPRs was found to correlate well with water solubility but not with citrate solubility. The results obtained in this study show that the detrimental effect of Fe2O3 + Al2O3 content on the solubility and P availability of PAPR should be considered when selecting a PR for PAPR production.  相似文献   

17.
Reactive phosphate rock (RPR) is the only phosphorous (P) fertiliser allowed for organically managed, broad-acre crop-pasture systems in southern Australia. However, soils are usually deficient in P, and the soils, climate, and plant species grown, do not promote extensive dissolution of RPR so the fertiliser is poorly effective for crop and pasture production. Biological oxidation of elemental sulphur (S) mixed and applied with RPR may sufficiently increase dissolution of P from RPR to improve its effectiveness as a P fertiliser. However, this needs to be confirmed in field studies in the region. Rates of RPR and S required to optimise dissolution of RPR are not known for the soils, environments, and agricultural systems used. Both pot and field studies showed that mixing RPR and S, and incorporating the mix into soil (top 10 cm for field studies), significantly increased Olsen P and soil solution P, even in strongly acidic soils (pHCa < 4.6). In general, Olsen P increased linearly with the applied rate of P up to 42–70 kg P ha−1 and the rate of change in Olsen P per unit of applied P increased with the applied rate of S up to 400 kg S ha−1. This interaction suggested that the effectiveness of RPR + S may be compromised by segregation of RPR and S. In addition, there was evidence that S application may not necessarily create a more acidic soil environment necessary for enhanced dissolution of RPR.  相似文献   

18.
Reactive phosphate rocks (RPRs) from Sechura, Peru (SPR) and North Carolina, USA (NCPR) were compared with triple superphosphate (TSP) as phosphate (P) fertilizers for permanent grass/clover pastures in four field trials in New Zealand. Trial sites ranged in initial pH (in water) from 5.7 to 6.3 and in rainfall from 712 to 1338 mm yr–1. SPR and NCPR were used in the unground as-received state. Fertilizers were applied annually for six years. Pasture was harvested by frequent mowing, and herbage dry matter (DM) yields were measured at each cut. Herbage P concentrations were measured at each cut in two trials and on most cuts in the other two.For all sites combined, DM production from RPRs was initially significantly less than from TSP but it improved relative to TSP with time. Substitution values of RPR relative to TSP, denoted by S.V. (TSP/RPR) and defined as the ratio of P in TSP to P in RPR required to produce the same plant response during a specified period of time, were estimated by relating yields from RPR treatments to the yield response curve for different application rates of TSP. For the four trials combined, S.V. (TSP/SPR) increased from 0.32 in year 2 to 0.85 in year 6. S.V. values for NCPR were similar. The site which had the lowest S.V. values (average 0.20) for total production over six years was the site with highest pH (6.3) and lowest rainfall (712 mm). Corresponding S.V. values for the other sites were 0.50 to 0.78.Herbage P concentrations showed a similar pattern of RPR performance relative to TSP to that shown by DM production except at the highest application rate where TSP always supported much higher herbage P concentrations than RPR.The pattern of DM production from RPR relative to TSP was explained on the basis of a model involving soil P pools of undissolved fertilizer P and plant-available P respectively, with the hypothesis that P dissolved from RPR entered the plant-available P pool and was used with the same efficiency as P entering by dissolution of TSP. Model predictions of substitution values using directly measured RPR dissolution rates agreed well with observed substitution values.The advantage of RPRs in comparison to soluble P fertilizers for permanent pastures was considered to lie in their lower price and not in greater nutrient efficiency. Economic advantage was calculated in terms of the return on investment from establishing and maintaining a pool of RPR in the soil large enough to release the required annual amount of plant-available P compared with the cost of annual applications of soluble P fertilizer.  相似文献   

19.
Plant available soil phosphate is frequently deficient for crop and pasture production on organic farms in southern Australia. Improved P management, including developing a fertiliser product conforming to organic farming regulations, is required to sustain and increase production on these farms. Reactive phosphate rock (RPR) and elemental sulphur (S) are natural products. Field and pot experiments were established to measure the impact of ground RPR, and co-treatment of RPR with finely ground S, on available soil phosphate (Olsen P), plant dry matter, and the P concentration (%) and content (kg P ha−1) of the dry matter. Under dry-land field conditions characteristic of cropping regions in southern Australia ( < 600 mm rainfall, organic carbon < 3%), co-treatment of RPR with S was necessary to increase Olsen P, and higher values of Olsen P were generally associated with increased plant dry matter, together with P concentration or P content of the dry matter. The required amount of S was less the more acidic the soil, but greater than reported as being effective in situations of higher rainfall ( > 1,000 mm) and soil organic carbon concentration (OC 11%). It was deduced that the S is probably required to overcome the constraint on dissolution of RPR resulting from frequent periods of low soil moisture. It was concluded that for the south-eastern Australian cropping zone, co-treatment of ground reactive phosphate rock with finely ground elemental S, at ratios (RPR:S) of at least 2:1, depending on soil pH, is required for effective use␣of RPR, even in strongly acidic soil (pHCa < 4.5). It was recommended that ‘organic’ farmers may recover soil P fertility by applying RPR + S fertiliser to the most acidic fields, postponing soil liming, and managing the fields to conserve soil moisture.  相似文献   

20.
The Pi test for phosphorus (P) is a new method in which strips of iron oxide impregnated filter paper are used as a sink to sorb and extract P from a soil solution. In a greenhouse experiment, the Olsen and Pi tests were compared for their effectiveness in evaluating P availability to maize on calcareous soils. Phosphate rock from Togo, partially acidulated with H2SO4 at 50% acidulation level (PAPR 50% H2SO4) and single superphosphate (SSP) were applied at different rates to a calcareous soil (Vernon Clay, pH 8.2, CaCO3 18.9%) which was preincubated with KH2PO4 to raise plant-available P to different levels. In soils treated with SSP, dry-matter yield of maize correlated equally well with Pi-P and with Olsen-P (r = 0.96***). P uptake correlated significantly with Pi-P (r = 0.94***) as well as Olsen-P (r = 0.97***). Likewise, in soils fertilized with PAPR, significant correlations were found between dry-matter yield and Pi-P (r = 0.97***) and between dry-matter yield and Olsen-P (r = 0.94***). When all the data were pooled, Pi-P and Olsen-P correlated equally well with both dry-matter weight (r = 0.97***) and P uptake (r = 0.94***). Phosphorus extracted by the Pi test correlated significantly with P extracted by the Olsen test (r = 0.99***).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号