首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several crack tip stress intensity factor solutions have been published for semi-elliptic, surface breaking cracks in plates subjected to tension or bending forces. These solutions do not agree with each other particularly well and the basis for choosing which one is the best has not been established. In this paper, the development of fatigue crack shape is used as a diagnostic tool to test the accuracy of these theoretical stress intensity solutions in predictive fatigue crack growth calculations. Those solutions giving the best engineering estimate of crack tip stress intensity factors are identified. Single equations are also given for each loading case at the deepest point or surface intersection point of semi-elliptic cracks in order to facilitate calculations on programmable calculators. A rational basis for calculating the progress of a crack which snaps through the thickness and continues to propagate in a stable way by fatigue is suggested.  相似文献   

2.
Fatigue crack growth tests have been carried out on pre-cracked specimens of steel AFNOR XC 38 under rotary bending conditions. The semi-elliptical surface crack shape evolution was determined and the results were analyzed by da/dN =f(ΔK) using a stress intensity factor solution for semi-elliptical surface cracks in round bars subjected to a bending stress modified to take into account the rotatary bending conditions. Results show a very good correlation with fatigue crack growth data obtained in standard centre cracked tension specimens of the same steel. An application to the sensitivity of design parameters to an analysis of cracked railway axles is proposed, allowing an improvement in maintenance procedures.  相似文献   

3.
Accurate yield surfaces of plane strain single-edge-cracked specimens having shallow as well as deep cracks are developed using finite element limit analyses and monotonic interpolation functions. Fully plastic shallow crack configurations are classified based on certain aspects of the yield surfaces. Relationships between incremental plastic crack tip and crack mouth opening displacements and incremental load point displacement/rotation are obtained for a wide range of relative crack depths and loading ratios. Fully plastic crack-tip fields for a sufficiently deep crack in a single-edge cracked specimen are examined to provide the stress triaxiality and the angular orientation of flow line at the crack tip in terms of the remotely applied tension-to-bending ratio. Evidence for fully plastic crack-tip stress fields consisting of an incomplete Prandtl fan and a crack plane constant state region is discussed.  相似文献   

4.

A square plate containing a central crack and subjected to biaxial stresses has been studied by a finite element analysis. An elastic analysis shows that the crack opening displacement and stress of separation ahead of the crack tip are not affected by the mode of biaxial loading and therefore the stress intensity factor adequately describes the crack tip states in an elastic continuum.

An elastic-plastic analysis involving more than localized yielding at the crack tip provides different solutions of crack tip stress fields and crack face displacements for the different modes of biaxial loading.

The equi-biaxial loading mode causes the greatest separation stress but the smallest plastic shear ear and crack displacement. The shear loading system induces the maximum size of shear ear and crack displacement but the smallest value of crack tip separation stress.

  相似文献   

5.
The elastic T‐stress is an important constraint parameter for characterizing elastic–plastic crack‐tip fields and in fracture assessment procedures. However, many of the methods reported in the literature for estimating T‐stress are not easily suited for surface‐cracked pipes because these are three‐dimensional in nature. Here, the line‐spring method is demonstrated to be an efficient and accurate tool for the constraint estimation in surface‐cracked pipes. Detailed three‐dimensional analyses are performed to verify the line‐spring results. Using the line‐spring method, the effects of different crack geometries and diameter‐to‐thickness ratio on stress‐intensity factor (SIF) and T‐stress in circumferentially surface‐cracked pipes are examined. Further, a compendium of normalised SIF and T‐stress values for surface‐cracked pipes in remote tension and bending, calculated from a total of 1000 analyses, is tabulated. Finally, the application of an ‘elastic–plastic’ T‐stress under large‐scale plasticity is explored.  相似文献   

6.
In the first part of this work the asymptotic stress field distribution surrounding a crack in a generally orthotropic solid (i.e. one in which the material and loading axes do not coincide) is derived. The resulting crack tip stress intensity factors are also related to the energy release rate of the cracked solid. In any physical situation, however, the range of dominance of these asymptotic fields will be limited, and will depend on specific geometry and loading parameters. Thus, the second part of this work deals with the range of dominance of the derived stress fields in edge cracked bending loaded fiber reinforced composite plates. The lower and upper limits of the range of dominance of the solution are respectively determined from three-dimensional and two-dimensional full field finite element solutions. The comparison of full field solutions with the asymptotic result provides information on the latter's range of dominance. In all cases the effects of mixed mode loading are considered.  相似文献   

7.
The purpose of this paper is to present a methodology for the assessment of the near‐crack tip fields in structures operating at elevated temperatures in the creep range and subjected to cyclic mechanical and thermal loads. The method involves generating simplified extreme solutions, which corresponds to very short (rapid cycle) and long (slow cycle) cycle times, bounding the behaviour for intermediate cycle times. In such situations, by examining the increments of strain over a cycle of loading at the crack tip, the solutions may be related to the HRR fields and, hence, related to an equivalent constant load. Here, these solutions are generated using a nonlinear programming method, the linear matching method (LMM), on two bounding constitutive relationships with identical uniaxial data, Norton's law and the Bailey–Orowan model. These solutions are generated for the classical cracked axisymmetric Bree problem, presented as a contour of an equivalent path‐independent integral in creep, C*, by using a sampling point within an identified best‐matched HRR field.  相似文献   

8.
In a domain of reasonable accuracy around the crack tip, asymptotic equations can provide closed form expressions that can be used in formulation of crack problem. In some studies on shape memory alloys (SMAs), although the pseudoelastic behavior results in a nonlinear stress–strain relation, stress distribution in the vicinity of the crack tip is evaluated using asymptotic equations of linear elastic fracture mechanics (LEFM). In pseudoelastic (SMAs), upon loading, stress increases around the crack tip and martensitic phase transformation occurs in early stages. In this paper, using the similarity in the loading paths of a pseudoelastic SMA and a strain hardening material, the stress–strain relation is represented by nonlinear Ramberg–Osgood equation which is originally proposed for strain hardening materials, and the stress distribution around the crack tip of a pseudoelastic SMA plate is reworked using the Hutchinson, Rice and Rosengren (HRR) solution, first studied by Hutchinson. The size of the transformation region around the crack tip is calculated in closed form using a thermodynamic force that governs the martensitic transformation together with the asymptotic equations of HRR. A UMAT is written to separately describe the thermo-mechanical behavior of pseudoelastic SMAs. The results of the present study are compared to the results of LEFM, computational results from ABAQUS, and experimental results for the case of an edge cracked NiTi plate. Both set of asymptotic equations are shown to have different dominant zones around the crack tip with HRR equations representing the martensitic transformation zone more accurately.  相似文献   

9.
The mixed mode bending specimen originally developed for mixed mode delamination fracture characterization of unidirectional composites has been extended to the study of debond propagation in foam cored sandwich specimens. The compliance and strain energy release rate expressions for the mixed mode bending sandwich specimen are derived based on a superposition analysis of solutions for the double cantilever beam and cracked sandwich beam specimens by applying a proper kinematic relationship for the specimen deformation combined with the loading provided by the test rig. This analysis provides also expressions for the global mode mixities. An extensive parametric analysis to improve the understanding of the influence of loading conditions, specimen geometry and mechanical properties of the face and core materials has been performed using the derived expressions and finite element analysis. The mixed mode bending compliance and energy release rate predictions were in good agreement with finite element results. Furthermore, the numerical crack surface displacement extrapolation method implemented in finite element analysis was applied to determine the local mode mixity at the tip of the debond.  相似文献   

10.
本文采用含裂纹无限大板特殊基本解和合力边界条件,用体积力法对含裂纹金属薄板的胶贴补强问题进行应力分析。使用一满足胶贴层位移连续条件的剪切单元,把问题转化为对裂纹板和贴片的分析。由于使用的特殊基本解精确满足裂纹面自由力边界条件,避免了对裂纹尖端附近的奇异场进行离散处理,因而可以比较精确地求出裂纹尖端附近的应力分布,同时由于单位集中力引起的裂纹尖端应力强度因子可以解析得到,因而可以较准确地反映出用应力强度因子的降低来表征的贴补效果。作为贴补计算的例子,文中计算了受拉力和剪力作用时,含中心裂纹的金属裂纹板在贴补前后裂纹尖端应力强度因子的降低,给出了贴片的厚度、弹性模量和尺寸及肢贴层厚度等对贴补效果的影响。  相似文献   

11.
A study was undertaken to develop an analytical model that can predict how much reduction in Strain Energy Release Rate (SERR) can be achieved by repairing a cracked plate using a single-side bonded patch. The plate may be subjected to inplane or out-of-plane bending loading. Furthermore, the plate may be flat or curved in a cylindrical shape. The model helps to select patch material (i.e., elastic modulus of the material) and the appropriate patch size in order to reduce the SERR at the crack tip of the patched base plate. In other words, the analytical model can be utilized to select the patch material and patch dimensions required to achieve the desired SERR for a cracked base plate with known modulus, thickness, and crack size. The model is based on axial and bending stresses of the single-side strap joint configuration, which are related to the SERR at the crack tip of a plate with a single-side patch repair. In order to verify the analytical model, finite element analyses were conducted to determine stresses as well as SERR in many different patched plates. The numerical study confirmed the validity of the analytical model in predicting the reduction ratio of SERR resulting from the single-side patch repair.  相似文献   

12.
Cracks in thin structures often are subjected to combined in-plane and out-of-plane loading conditions leading to complex mixed mode conditions in the crack tip region. When applied to ductile materials, large out-of-plane displacements make both experimentation and modeling difficult. In this work, the mixed-mode behavior of thin, ductile materials containing cracks undergoing combined in-plane tension (mode I) and out-of-plane shear (mode III) deformation is investigated experimentally. Mixed-mode fracture experiments are performed and full, three-dimensional (3D) surface deformations of thin-sheet specimens from aluminum alloy and steel are acquired using 3D digital image correlation. General characteristics of the fracture process are described and quantitative results are presented, including (a) the fracture surface, (b) crack path, (c) load-displacement response, (d) 3D full-field surface displacement and strain fields prior to crack growth, (e) radial and angular distributions of the crack-tip strain fields prior to crack growth and (f) singularity analysis of the crack-tip strains prior to crack growth. Results indicate that the introduction of a mode III component to the loading process (a) alters the crack tip fields relative to those measured during nominally mode I loading and (b) significantly increases the initial and stable critical crack-opening-displacement. The data on strain fields in both AL6061-T6 aluminum and GM6208 steel consistently show that for a given strain component, the normalized angular and radial strains at all load levels can be reasonably represented by a single functional form over the range of loading considered, confirming that the strain fields in highly ductile, thin-sheet material undergoing combined in-plane tension and out-of-plane shear loading can be expressed in terms of separable angular and radial functions. For both materials, the displacement and strain fields are (a) similar for both mixed-mode loading angles Φ = 30° and Φ = 60° and (b) different from the fields measured for Mode I loading angle Φ = 0°. Relative to the radial distribution, results indicate that the in-plane strain components do not uniformly exhibit the singularity trends implicit in the HRR theory.  相似文献   

13.
Two crack tip elements are formulated for a stationary, mode I plastic crack in planar structures using hybrid assumed stress approach, based on the secant modulus and the Newton-Raphson schemes, respectively. The stress distribution in the crack tip element is assumed to be the HRR field superimposed by the regular polynomial terms. The formulated (hybrid) crack tip elements are compatible with the isoparametric element so that they can be used conveniently along with the conventional displacement-based finite elements. The intensity of the HRR stress field, the J-integral, is determined directly from the finite element equations together with the nodal displacements. The dominance of the HRR stress field at the crack tip is pertinent to the present approach, which depends on geometry and loading conditions. Since the J-integral is globally path-independent for nonlinear elastic materials (deformation plasticity model), in order to assess the accuracy and efficiency of the methodology as compared to the contour integration approach, numerical studies of common plane-stress cracked configurations are performed for these materials. The results indicate that for a sufficiently small crack tip element size, J from the present approach correlates well, within 6 percent difference, with that from the contour integration for a wide range of material hardening coefficients if the HRR zone exists at the crack tip. These highly accurate results for J from the crack tip stresses could not be achieved without using (newly) modified variational principles and a refined numerical technique. It should be emphasized that the present methodology also can be applied to cracks in J 2 flow materials under HRR dominance. In such case, the J integral may not be globally path independent, and hence it now must be determined from the stress and strain fields near the crack tip.  相似文献   

14.
This study is concerned with crack tip strain field fluctuations at loads below the point of crack closure in fatigue cycling. Moiré interferometry was used to investigate crack tip fields in compact tension specimens, cracked under constant stress intensity range and fixed R-ratio conditions. An elastic-plastic finite element model of simulated closure was developed to provide a theoretical cross-reference for the moiré studies. The ‘stretched zone’, which is believed to be the most significant source of closure effects, was simulated by inserting a constant thickness strip of elements into the crack before unloading from the maximum load point. Analysis of the crack tip fields in the experimental and theoretical cases was made in terms of crack face opening profiles, compliance changes and elastic stress intensity parameters. The latter were inferred through stress and displacement measurements made along circular and radial paths relative to the crack tip. Closure on the stretched zone was found to generate non-proportional loading in the crack tip field, so that the resulting stress changes were not well characterized by the asymptotic elastic equations. It is concluded firstly, that significant strain fluctuations occur below the point of closure load and that these should not be ignored in crack propagation studies. Secondly, the effective stress intensity range in fatigue cycling is not simply related to the open-crack stress intensity range and the need therefore remains for R-ratio and geometry effects to be treated as variables in crack propagation data collection programmes.  相似文献   

15.
In a previous paper, it was shown that an estimation approach to crack tip properties under cyclic creep loading conditions was described, using a methodology based on the linear matching method (LMM). The calculations revealed the possibility of obtaining the crack tip parameters, C* (n), for cracked structures subjected to both mechanical loads and temperatures, using the HRR field criterion as the crack tip condition. In this paper, those calculated values of C* (n) are re‐interpreted and presented in terms of the reference stresses, insensitive to the constitutive models and creep exponent. These reference stress values are compared with those currently used for life assessment of high‐temperature plant, showing that current practice is significantly conservative for thermal loading.  相似文献   

16.
The fatigue process near crack is governed by highly concentrated strain and stress in the crack tip region. Based on the theory of elastic–plastic fracture mechanics, we explore the cyclic J-integral as breakthrough point, an analytical model is presented in this paper to determine the CTOD for cracked component subjected to cyclic axial in-plane loading. A simple fracture mechanism based model for fatigue crack growth assumes a linear correlation between the cyclic crack tip opening displacement (ΔCTOD) and the crack growth rate (da/dN). In order to validate the model and to calibrate the model parameters, the low cycle fatigue crack propagation experiment was carried out for CT specimen made of Q345 steel. The effects of stress ratio and crack closure on fatigue crack growth were investigated by elastic–plastic finite element stress–strain analysis of a cracked component. A good comparison has been found between predictions and experimental results, which shows that the crack opening displacement is able to characterize the crack tip state at large scale yielding constant amplitude fatigue crack growth.  相似文献   

17.
This paper presents experimental results on fatigue crack growth propagation for the EA4T steel widely employed in the manufacturing of railway axles. Apart from standard M(T) and C(T) specimens, the investigations include bending tests on cylindrical bars and rectangular plates containing semi-elliptical surface cracks, geometries representative of surface flaws in components. The results give an evidence of the crack growth rate dependency upon the geometry and loading conditions of cracked specimens. The paper also concludes that fatigue crack growth rates correlate with crack tip plasticity, even within low and middle stress intensity factor ranges. Some remarks are provided with respect to the significance of the results for assessing residual lives of railway axles under in-service conditions.  相似文献   

18.
The problem of near tip stress fields in a cracked body subjected to Mode I loading at elevated temperatures is studied. Specifically, the superalloy, IN 718, is examined in the standard compact tension specimen geometry. The simulation is at 650°C. The specimen is assumed to be under dead load conditions. For a stationary crack, the near tip stress fields are calculated and compared with the asymptotic solutions available in the literature. While the results assuming small strains agree very well with the asymptotic solutions, the large strain analysis does not. The results indicate that both the amplitude and the asymptotic exponent are dependent on the applied load level which is in disagreement with the asymptotic predictions. In addition, the zone effected by creep deformation is larger when large strains are considered. An algorithm is developed and tested for the modeling of stable crack growth. Both convergence and stability are investigated. Explicit time integration is used for crack growth studies as it is demonstrated to be computationally more efficient. The algorithm is employed to study the near tip stress fields for a growing crack. The near tip stress fields for a growing crack (with constant velocity) are generated using the developed algorithm. The results demonstrate that the asymptotic behavior of the stress field is load dependent. Comparison is made with the limited analyses available. Recommendations for future research are discussed.  相似文献   

19.
20.
The residual stress and displacement fields caused by localized plastic flow near a mode I crack tip in a sheet under plane stress conditions are investigated. The present study founds on the classical Dugdale scheme of the plastic flow localization. The residual stress field is considered to be induced by reversed plastic flow near the crack tip caused by an unloading. As it is found the residual stresses around the crack compress the crack tip, while the residual tensile stresses in a distant from the crack tip zone occur. It is shown the maximum residual tensile stresses can reach the significant value of the one third of the yield limit. The length of the compressed plastic zone and the residual displacement distributions are obtained. The exact formula for the residual crack opening displacement to estimate the crack closure is found. Then the next loading of the cracked plate is considered. It is shown that the second loading causes the origin of two plastic zones localized near the crack tip and at the point, where the maximum residual tensile stresses are concentrated. Again, according to the Dugdale scheme of the plastic localization, both the plastic flow zones are modelled as narrow stripes on the line extending the crack. To determine three non-dimensional parameters, characterizing the position of the segment-like plastic flow zones, a non-linear system of equations is obtained and analyzed. The exact formula for the crack opening displacement after a loading–unloading cycle is obtained. An asymptotic analysis (as the linear dimension of the distant plastic flow zone compared with the actual crack length is small) is given. It shows that the effect of the distant plastic flow zone appears as some complementary crack closure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号