首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphatidylserine (PS) is normally restricted to the inner leaflet of the plasma membrane of cells (including blood platelets). Upon cell activation PS may become exposed to the outer surface of the cell. Cell membranes with surface exposed PS at the outside form a catalytic surface for coagulation reactions. When platelets are activated with ionophore or with thrombin in combination with thapsigargin, calcium induced scrambling of phospholipids takes place, resulting in PS exposure. Concomitant with PS exposition structural changes take place. On resting and activated platelets we combined the immunocytochemical detection of surface exposed PS with (ultra)structural information. Blood platelets were activated in the presence of annexin V, a protein which binds to PS in the presence of Ca2+. Annexin V was found to bind to lipid bilayers containing more than 5 mole % PS as estimated by binding of fluorescent-labelled annexin V to liposomes with varying PS concentrations. After vitrification, freeze-substitution and embedding of the platelets, annexin V was located on ultra thin sections, as detected by an anti-annexin V antibody and gold labelled protein A. Upon activation, the platelets show two different forms; irregular platelets with unchanged cytoplasm and round cells with apparently diluted cytoplasm. Activation with ionophore initially resulted in both forms, but after ten minutes only round platelets with diluted cytoplasm were observed. Both forms of these platelets as well as the microvesicles were found to be annexin V positive. However upon activation with thrombin in combination with thapsigargin, only the round cells with diluted cytoplasm and microvesicles were annexin V positive, whereas platelets with unchanged cytoplasm, even when microvesicles are present, are negative for annexin V.  相似文献   

2.
The plasma membrane is characterized by a non-symmetrical distribution of phospholipids; the outer monolayer of the plasma membrane consists primarily of phosphatidylcholine (PC), and the aminophospholipids, phosphatidylserine (PS) and phosphatidylethanolamine (PE), preferentially reside in the inner monolayer. Asymmetry is maintained by a membrane associated ATP-dependent aminophospholipid translocase that preferentially relocates PS and PE from the outer to the inner monolayer. Although in most cells the translocase minimizes expression of PS on the outer surface, differentiating trophoblasts express increasing levels of surface PS. One possible explanation of prolonged PS externalization is that trophoblasts lack an effective aminophospholipid translocase. To test this hypothesis, fluorescent PC and PS analogues, NBD-PC and NBD-PS, were introduced into the plasma membrane of a choriocarcinoma model of trophoblast, JEG-3 cells. After incubation, the fluorescent lipid remaining on the outer monolayer was removed by incubation with fetal bovine serum. JEG-3 cells selectively translocated 80 per cent of the NBD-PS without significant translocation of NBD-PC. The process was significantly inhibited by N-ethylmaleimide (NEM) and vanadate. It is concluded that this model of trophoblast contains an active aminophospholipid translocase.  相似文献   

3.
This review deals with current concepts on the regulation and function of phospholipid asymmetry in biological membranes. This ubiquitous phenomenon is characterized by a distinctly different lipid composition between the inner and outer leaflet of the membrane bilayer. Transbilayer asymmetry is controlled by different membrane proteins that function as lipid transporters, catalyzing uni- or bi-directional transbilayer movement of lipids. Under normal conditions, an ATP-dependent protein (aminophospholipid translocase) generates and maintains phospholipid asymmetry by promoting unidirectional transport of aminophospholipids from the outer- to the inner leaflet. The membrane lipid asymmetry may be compromised during cellular activation by a Ca2+-dependent transporter (lipid scramblase) that facilitates rapid bi-directional movement of all major phospholipid classes. A major consequence of this collapse of lipid asymmetry is the exposure of phosphatidylserine (PS) at the outer membrane surface. Surface exposure of PS has important physiological and pathological implications for blood coagulation, apoptosis, and cell-cell recognition.  相似文献   

4.
The phospholipid translocation from the outer to the inner leaflet of synaptic vesicles isolated from the electric organ of the Japanese electric ray, Narke japonica, was measured using fluorescent phospholipid probes. Phosphatidylcholine (PC), phosphatidylethanolamine (PE), or phosphatidylserine (PS) with a fluorescent NBD-labeled short acyl chain at the sn-2 position was mixed with purified synaptic vesicles and the probe in the outer leaflet of the membranes was reduced with dithionite to quench the fluorescence from time to time. The percentage of fluorescence remaining after the dithionite treatment served as an index for the phospholipid translocation. The results obtained indicated that about 30, 13, and 9% of NBD-PE, NBD-PS, and NBD-PC, respectively, were translocated from the outer to the inner leaflet in 3 h. Thus, the translocation activity in synaptic vesicle membranes was much higher for PE than for PS, in contrast to the previous results obtained with plasma membranes, including synaptosomal membranes. The percentages of the phospholipid in the inner leaflet at equilibrium were estimated to be 41, 31, and 14% for PE, PS, and PC, respectively. The translocation was inhibited by pretreatment with an SH reagent, iodoacetamide, indicating the involvement of a proteinaceous translocator. These data may provide a biochemical basis for elucidating the mechanisms of membrane fusion and exocytosis at nerve endings.  相似文献   

5.
The two leaflets of the plasma membrane of eukaryotic cells differ in lipid composition: the outer leaflet comprises mainly neutral choline containing phospholipids, whereas the aminophospholipids reside almost exclusively in the cytoplasmic leaflet. The importance of transmembrane lipid asymmetry may be judged from the fact that the cell invests energy to maintain this situation for which at least two regulatory mechanisms are held responsible. A translocase, selective for aminophospholipids, acts as an ATP-dependent pump for rapid inward movement of phosphatidylserine (PS) and phosphatidylethanolamine; in addition, a non-selective, but also ATP-dependent pump causes outward movement of phospholipids, be it at a much lower rate compared to the inward transport by the aminophospholipid translocase. These two systems, acting in concert, are thought to be the main players in the maintenance of a dynamic equilibrium of the phospholipids over both membrane leaflets. Dissipation of membrane lipid asymmetry can be elicited in different cell types under a variety of conditions; in particular, platelets upon activation rapidly lose their normal plasma membrane lipid distribution, but also in other blood cells, lipid asymmetry can be lost, be it at a much lower rate and extent than in platelets. A putative protein, referred to as "scramblase' has been described, which requires the continuous presence of elevated intracellular Ca(2+)-levels, to allow a rapid, non-selective and bidirectional transbilayer movement of phospholipids. Although scrambling of lipids does not require ATP as such, preliminary studies suggest the possible involvement of one or more phosphorylated proteins. The most prominent consequence of the loss of phospholipid asymmetry is exposure of PS in the outer leaflet of the plasma membrane. Surface-exposed PS serves several important physiological functions: it promotes assembly of enzyme complexes of the coagulation cascade, it forms a signal for cell-cell recognition, which is important for cell scavenging processes. Surface-exposure of PS is an early phenomenon of apoptosis and appears to be involved in efficient removal of these cells. In addition, PS in the outer leaflet of cells is thought to play a role in cell fusion processes. It may be clear from the foregoing, that the amount of PS present at the cell surface needs to be tightly controlled, and that an impairment of this process leads to either excessive- or diminished exposition of PS which may have several pathophysiological consequences.  相似文献   

6.
We recently identified a 35-kDa erythrocyte membrane protein, phospholipid scramblase, that promotes Ca2+-dependent transbilayer movement of phosphatidylserine (PS) and other phospholipids (PL) in reconstituted proteoliposomes (Zhou, Q., Zhao, J., Stout, J. G., Luhm, R. A., Wiedmer, T., and Sims, P. J. (1997) J. Biol. Chem. 272, 18240-18244). To determine whether this same protein is responsible for the rapid movement of PS from inner-to-outer plasma membrane leaflets in other cells exposed to elevated cytosolic calcium concentration ([Ca2+]c), we analyzed how induced movement of PS to the cell surface related to expression of PL scramblase. Exposure to Ca2+ ionophore A23187 resulted in rapid PS exposure in those cell lines constitutively high in PL scramblase (HEL, Epstein-Barr virus-transformed B-lymphocytes, and Jurkat), whereas this response was markedly attenuated in cells expressing low amounts of this protein (Raji, HL60, and Dami). To confirm this apparent correlation between PL scramblase expression and PS egress at elevated [Ca2+]c, Raji cells were transfected with PL scramblase cDNA in pEGFP-C2, and stable transformants expressing various amounts of GFP-PL scramblase fusion protein were obtained. Clones expressing GFP-PL scramblase showed distinctly plasma membrane-localized fluorescence. When compared either with untransfected Raji cells or with transformants expressing GFP alone, clones expressing GFP-PL scramblase fusion protein showed increased exposure of PS at the cell surface in response to elevated [Ca2+]c, accompanied by increased expression of membrane catalytic function for the prothrombinase enzyme complex. These data indicate that transfection with PL scramblase cDNA promotes movement of PS to cell surfaces and suggest that this protein normally mediates redistribution of plasma membrane phospholipids in activated, injured, or apoptotic cells.  相似文献   

7.
We studied the effects of porcine factor VIII (P-FVIII; Hyate:C) and other coagulation products employed in the management of patients with hemophilia A, on platelet activation in vitro. Exposure of normal resting platelets to P-FVIII resulted in platelet activation, as manifested by increased expression of the platelet surface activation markers CD62, CD63, and activated-GPIIbIIIa, and by activation-induced modulation of expression of normal platelet membrane glycoproteins CD41, CD42, and CD36. In contrast, platelet activation was not observed after exposure of the platelets to human FVIII, FEIBA, recombinant FVIIa, or cryosupernatant plasma. As with thrombin, exposure of platelets to P-FVIII resulted in the generation of platelet microparticles, an effect not seen not with the other products. In contrast to the characteristic reduction in expression in the number of CD42 molecules detected on thrombin-activated platelets, P-FVIII-stimulated platelets showed a small increase in CD42 expression. In contrast to thrombin, P-FVIII did not cause platelet dense granule release. The results indicate that therapeutic P-FVIII activates platelets, likely in ways that are different from the platelet activation seen with thrombin. The observed platelet activation and microparticle generation may provide a "hypercoagulable" mechanism for hemostasis with P-FVIII therapy separate from, and additional to, that due to increased circulating FVIII levels.  相似文献   

8.
Methods have been developed to isolate human platelet membrane fragments from plasma and serum. Rabbit antibody produced against the human platelet membrane glycoprotein complex, IIb/IIIa, was utilized in an immunoelectrophoretic assay to evaluate the amount of this antigen in various microparticle preparations. The serum concentration of platelet microparticles was more than tenfold greater than that observed for plasma (65 micrograms/ml versus 4.4 micrograms/ml, respectively). Ultrastructural evaluation of either plasma or serum-derived microparticles disclosed a variety of membrane fragments and membrane-bound vesicles with occasional fragments of red blood cells, white blood cells, and platelets. In contrast, microparticle preparations derived from isolated washed platelets after thrombin stimulation contained a heterogeneous array of membrane fragments, vesicles, and granules but no identifiable red cell, white cell, or platelet fragments. Thus, these studies demonstrate that normal human plasma and serum contain platelet membrane fragments that are produced during cell activation. If a similar loss of platelet membranes occurs in vivo following reversible platelet activation, it is possible that the resulting membrane modifications may be of importance in both the structural and functional changes that develop during platelet senescence.  相似文献   

9.
Microparticles are released during platelet activation in vitro and have been detected in vivo in syndromes of platelet activation. They have been reported to express both pro- and anticoagulant activities. Nevertheless, their functional significance has remained unresolved. To address the mechanism(s) of cellular activation by platelet microparticles, we examined their effects on platelets and endothelial cells. Activation of human platelets by diverse stimuli (thrombin, 0.1 U/ml; collagen, 4 microg/ml; and the calcium ionophore A23187, 1 microM) results in shedding of microparticles. Pretreatment of these particles, but not membrane fractions from resting platelets, with (s)PLA2 evokes a dose-dependent increase in platelet aggregation, intracellular [Ca2+] movement, and inositol phosphate formation. These effects localize to the arachidonic acid fraction of the microparticles and are mimicked by arachidonic acid isolated from them. However, platelet activation requires prior metabolism of microparticle arachidonic acid to thromboxane A2. Thus, pretreatment of platelets with the cyclooxygenase (COX) inhibitor, indomethacin (20 microM), the thromboxane antagonist SQ29,548 (1 microM), or the protein kinase C inhibitor GF109203X (5 microM) prevents platelet activation by microparticles. However, platelet microparticles fail to evoke an inositol phosphate response directly, via either of the cloned thromboxane receptor isoforms stably expressed in human embryonic kidney (HEK) 293 cells. Prelabeling platelets with [2H(8)] arachidonate was used to demonstrate platelet metabolism of the microparticle-derived substrate to thromboxane. Platelet microparticles can also induce expression of COX-2 and prostacyclin (PGI2) production, but not expression of COX-1, in human endothelial cells. These effects are prevented by pretreatment with actinomycin D (12 microM) or cycloheximide (5 microg/ml). Expression of COX-2 is again induced by the microparticle arachidonate fraction, which it may then use to synthesize PGI2. Both PGE2 and iloprost, a stable PGI2 analog, evoke human umbilical vein endothelial cell COX-2 expression, albeit with kinetics that differ from the response to platelet microparticles. These studies indicate a novel mechanism of transcellular lipid metabolism whereby platelet activation may be amplified or modulated by concentrated delivery of arachidonic acid to adjacent platelets and endothelial cells.  相似文献   

10.
To relate the improvement of platelet storage in synthetic media with possible structural changes, we conducted serial studies on the membranes of platelets and microparticles shed during platelet storage for up to 5 days at 4 degrees C either in plasma or in Seto solution. Spontaneous microparticle formation proceeded linearly for up to 2 days in both storage media, although the processes seemed to be different because microparticles from Seto solution had a higher lipid/protein ratio than those released in plasma. Microparticles were heterogeneous structures showing beta-N-acetylhexosaminidase, glucose-6-phosphatase and succinate dehydrogenase activities. After 2-5 days of storage, microparticles contained 60% of total cellular acetylcholinesterase (AChE), were doubly enriched in cholesterol. and showed identical phospholipid profiles but with a decrease in the lipid unsaturation index with respect to fresh platelets. Fluorescence anisotropy studies pointed to a remarkable increase in the deep lipid core fluidity of microparticles during storage of platelets in plasma. With respect to platelets, only those stored in plasma showed significant changes in lipid contents, with a 3-fold decrease in the phospholipid to protein ratio, a decrease in phosphatidylethanolamine (PE) levels and a parallel increase in phosphatidylcholine (PC) percentages in their phospholipid profile, together with a significant reduction in the lipid unsaturation index after 1 day of storage. The fluidity of the negatively charged surface of the platelet membranes decreased in platelets stored for 5 days in both media, whereas the fluidity of the membrane deep core was only increased in platelets stored in plasma. These findings suggest that Seto solution permits better storage of platelets for 5 days than plasma and support the notion that lipid peroxidation could play an important role in the structural changes observed.  相似文献   

11.
12.
The redistribution of spin-labeled phospholipid analogs across the plasma membrane of HepG2 cells, either in suspension or grown as monolayers, was investigated. After incorporation into the outer membrane leaflet spin-labeled aminophospholipids phosphatidylserine (PS) and phosphatidylethanolamine (PE) moved rapidly to the inner monolayer, whereas the analog of phosphatidylcholine (PC) disappeared more slowly from the outer leaflet. The fast, inward movement of the aminophospholipids was abolished after adenosine triphosphate (ATP)-depletion of cells, suggesting the presence of an aminophospholipid translocase in the plasma membrane of these cells. Compared with human red blood cells, the activity of the aminophospholipid translocase is two orders of magnitude higher in HepG2 cells. From these data, a transverse phospholipid asymmetry can be inferred with the aminophospholipids mainly concentrated on the inner monolayer and the choline-containing phospholipids on the outer leaflet. The relevance of the enrichment of PC in the outer membrane leaflet for the formation and composition of the bile is discussed.  相似文献   

13.
Patients with antiphospholipid syndrome, whether primary or secondary to systemic lupus erythematosus, may have thrombocytopenia. Their antibodies to anionic phospholipids might bind to phospholipids on the platelet wall but anionic phospholipids are asymmetrically located in the inner leaflet. In addition, antibodies to anionic phospholipids may require beta 2 glycoprotein I (beta 2GPI) as a cofactor in order to bind to phospholipids. In turn, beta 2GPI has high affinity for anionic phospholipids. Loss of this asymmetry occurs upon platelet activation and could thus permit such antibody-beta 2GPI-platelet interaction. We studied this by flow cytometry using purified beta 2GPI-FITC labelled and similarly labelled affinity-purified polyclonal antibodies to cardiolipin or phosphatidylserine (aPL) obtained from sera of patients with primary antiphospholipid syndrome. Five percent of resting platelets were bound by aPL in the presence of beta 2GPI. Such binding increased when we activated platelets with various agonists, reaching 31% with the concurrent use of thrombin and the calcium ionophore A23187. Platelet activation resulted in the expression of GMP140 but this did not correlate with aPL binding. This probably reflects that the expression of GMP140, which depends on their secretion of alpha granules, has different agonist responses and occurs at different times than do microvesicle formation and expression of prothrombinase activity which coincide with the loss of phospholipid asymmetry on the platelet wall. When we studied the binding of purified beta 2GPI we also found that it binds preferentially to activated platelets and that it seems to be a prerequisite for the binding of aPL onto them. Our findings indicate that aPL from patients with antiphospholipid syndrome may bind to activated platelets through beta 2GPI.  相似文献   

14.
Diazotized (125I)-diiodosulfanilic acid (DD125ISA) binds specifically to the exposed proteins on the surface of the rabbit platelet plasma membrane. This was demonstrated by the following observations with the use of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of whole platelets and the isolated plasma membrane fraction: (1) the specific activity of isolated membrane protein was sevenfold that of whole platelet protein, (2) no proteins of intact platelets were labeled which were not represented in the isolated plasma membrane, (3) DD125ISA-labeled proteins were altered by trypsin treatment of intact, labeled platelets, and (4) the pattern of labeling produced by reaction of isolated membranes with DD125ISA differed from that produced by the labeling of intact platelets. Reaction of DD125ISA with intact platelets produced labeling of only the three membrane glycoproteins (molecular weights: 180,000, 125,000, and 92,000 daltons) with greatest labeling of the largest glycoprotein and least labeling of the smallest glycoprotein. When rabbit platelets were labeled simultaneously with DD125ISA and 51Cr, the two isotopes were similarly distributed in various density populations of platelets. Some DD125ISA was solubilized from labeled and washed platelets by sonication, but all platelet DD125ISA was recovered in the plasma membrane fraction after 30 minutes' circulation in vivo. In vivo 51Cr recovery and survival were not altered by simultaneous labeling of platelets with DD125ISA. The disappearance of DD125ISA from circulating platelets (T 1/2 = 17 hours) was more rapid than 51Cr (T 1/2 = 30 hours) and appeared exponential in contrast to the linear 51Cr disappearance. On the other hand, DD125ISA did not disappear from platelets faster than 51Cr when doubly labeled platelets were harvested after 3 hours' circulation and incubated in autologous plasma (T 1/2 of DD125ISA elution = 43 hours, 51Cr = 33 hours). SDS-PAGE analysis of DD125ISA-labeled platelets after 14 to 20 hours' circulation in vivo demonstrated the same pattern of DD125ISA distribution on membrane glycoproteins as on the platelets prior to infusion. We interpret this symmetrical loss of the membrane label to indicate symmetrical loss of membrane proteins, suggesting that the platelet may lose pieces of membrane and not specific surface proteins during circulation. This could occur during reversible adhesion encounters during the process of hemostasis and cause the smaller size and decreased effectiveness of older platelets.  相似文献   

15.
P-selectin is an adhesion receptor for leukocytes expressed by activated platelets and endothelial cells. To assess a possible role of P-selectin in platelet clearance, we adapted an in vivo biotinylation technique in mice. Wild-type and P-selectin-deficient mice were infused with N-hydroxysuccinimido biotin. The survival of biotinylated platelets was followed by flow cytometry after labeling with fluorescent streptavidin. Both wild-type and P-selectin-deficient platelets presented identical life spans of about 4.7 days, suggesting that P-selectin does not play a role in platelet turnover. When biotinylated platelets were isolated, activated with thrombin, and reinjected into mice, the rate of platelet clearance was unchanged. In contrast, storage of platelets at 4 degreesC caused a significant reduction in their life span in vivo but again no significant differences were observed between the two genotypes. The infused thrombin-activated platelets rapidly lost their surface P-selectin in circulation, and this loss was accompanied by the simultaneous appearance of a 100-kD P-selectin fragment in the plasma. This observation suggests that the platelet membrane P-selectin was shed by cleavage. In conclusion, this study shows that P-selectin, despite its binding to leukocytes, does not mediate platelet clearance. However, the generation of a soluble form of P-selectin on platelet activation may have biological implications in modulating leukocyte recruitment or thrombus growth.  相似文献   

16.
17.
Normal hemostasis proceeds through the assembly of coagulant complexes on a lipid surface derived from activated platelets. The activation complex assembly is governed by multiple factors including the binding constants (Kd) of the coagulant factors for the lipid surface. The formation of the tenase complex requires delivery of factor VIII (FVIII) to the activated lipid surface by von Willebrand factor (vWF). Using electrophoretic quasi-elastic light scattering (ELS), we have examined the interaction of FVIII in the presence and absence of vWF with both resting and activated gel-filtered human platelets. Resting platelets do not bind FVIII. Platelets activated by thrombin, epinephrine, or SFLLRN, but not ADP or collagen, bind unactivated FVIII if vWF is not present. In the absence of vWF, unactivated FVIII binds to activated platelets with a Kd of 10.4 nM. B-domain deleted FVIII binds to activated platelets with a Kd of 5.1 nM. Thrombin -activated FVIII (FVIIIa) binds to activated platelets with a Kd of 1.7 nM. The activation of FVIII while bound to the platelet surface can be monitored as a function of time. In the presence of vWF, binding of unactivated FVIII to activated platelets was inhibited, but not the binding of FVIIIa. Displacement of bound unactivated FVIII from the platelet surface occurs when vWF is added to the FVIII-platelet complex. The binding of FVIII to activated platelets is affected by the B-domain, the state of FVIII activation, and the presence of soluble vWF and proceeds as a multistep process. FVIII binding by activated platelets is not affected by platelet gpIIb/IIIa or by platelet vWF.  相似文献   

18.
Role of surface glycoproteins in human platelet function   总被引:1,自引:0,他引:1  
Glycoproteins present at the external surface of cells probably play specific roles in cellular function. Increasing evidence suggests that the glycoproteins span the plasma membrane with the bulk of the bound carbohydrate asymmetrically distributed on the outer surface. Micellar association of glycoproteins in membranes leads to pore formation and functional roles in transport through the membrane, while surface glycoproteins have been shown to be enzymes, to determine cell specificity and contribute to the cell surface change. The platelet plasma membrane contains 3 major glycoproteins, glycoproteins I, II and III as characterized in order of their decreasing molecular weight. Glycoprotein I appears to have the highest sialic acid content and to give rise to a platelet specific acidic macroglycopeptide on trypsin digestion. Specific glycoprotein abnormalities in the platelets of patients with Glanzmann's thrombasthenia suggest that the glycoproteins play a role in the mechanism of platelet aggregation. A much reduced content of glycoprotein I in the platelets of 2 patients with the Bernard Soulier syndrome may be associated with their defective adhesion to subendothelium and indicates a possible relationship on the platelet surface with the von Willebrand factor protein. Preliminary evidence suggests that in common with other plasma membranes the platelet membrane has a fluid structure and that the organization of the glycoproteins on the platelet surface is extremely sensitive to stimuli and susceptible to change.  相似文献   

19.
Blood platelets, upon stimulation with various substances, take up calcium ions from the suspending medium. This influx occurs simultaneously with the release reaction, i.e. the specific secretion of a variety of substances from storage organelles and the second wave of aggregation. Various inhibitors of the release reaction inhibit this Ca2+ influx. Platelets previously loaded with 45Ca show an increased efflux of the cation upon stimulation by thrombin. These results suggest that the plasma membrane acquires an increased permeability to Ca2+ only in a later phase of platelet activation, in most cases after the earlier release of Ca2+ into the cytoplasm from Castoring organelles. Rapid shape change and release proceed independently of external calcium, whereas clot retraction depends upon a prolonged increased permeability of the plasma membrane to this cation.  相似文献   

20.
We have previously shown that human platelets express matrix metalloproteinase-2 (MMP-2) and that the release of this enzyme during platelet activation mediates the ADP- and thromboxane-independent part of aggregation. We have now used immunogold electron microscopy, flow cytometry. Western blot analysis and zymography methods to study the ultrastructural localization of MMP-2 in human washed platelets. Platelet aggregation was stimulated by collagen and the MMP-2 immunoreactivity of platelets was followed during various stages of aggregation. In resting platelets, MMP-2 was randomly distributed in the platelet cytosol without detectable association with platelet granules. Platelet aggregation caused the translocation of MMP-2 from the cytosol to the extracellular space. During the early stages of aggregation, MMP-2 remained in close association with the platelet plasma membrane. We conclude that the interactions of MMP-2 with platelet surface membranes mediate the aggregatory response induced by this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号