首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pleiotrophin/heparin-binding growth-associated molecule (HB-GAM) is a specific ligand of protein tyrosine phosphatase zeta (PTPzeta)/receptor-like protein tyrosine phosphatase beta (RPTPbeta) expressed in the brain as a chondroitin sulfate proteoglycan. Pleiotrophin and PTPzeta isoforms are localized along the radial glial fibers, a scaffold for neuronal migration, suggesting that these molecules are involved in migratory processes of neurons during brain development. In this study, we examined the roles of pleiotrophin-PTPzeta interaction in the neuronal migration using cell migration assay systems with glass fibers and Boyden chambers. Pleiotrophin and poly-L-lysine coated on the substratums stimulated cell migration of cortical neurons, while laminin, fibronectin, and tenascin exerted almost no effect. Pleiotrophin-induced and poly-L-lysine-induced neuronal migrations showed significant differences in sensitivity to various molecules and reagents. Polyclonal antibodies against the extracellular domain of PTPzeta, PTPzeta-S, an extracellular secreted form of PTPzeta, and sodium vanadate, a protein tyrosine phosphatase inhibitor, added into the culture medium strongly suppressed specifically the pleiotrophin-induced neuronal migration. Furthermore, chondroitin sulfate C but not chondroitin sulfate A inhibited pleiotrophin-induced neuronal migration, in good accordance with our previous findings that chondroitin sulfate constitutes a part of the pleiotrophin-binding site of PTPzeta, and PTPzeta-pleiotrophin binding is inhibited by chondroitin sulfate C but not by chondroitin sulfate A. Immunocytochemical analysis indicated that the transmembrane forms of PTPzeta are expressed on the migrating neurons especially at the lamellipodia along the leading processes. These results suggest that PTPzeta is involved in the neuronal migration as a neuronal receptor of pleiotrophin distributed along radial glial fibers.  相似文献   

2.
Using a radioligand binding assay we have demonstrated that phosphacan, a chondroitin sulfate proteoglycan of nervous tissue that also represents the extracellular domain of a receptor-type protein tyrosine phosphatase, shows saturable, reversible, high-affinity binding (Kd approximately 6 nM) to fibroblast growth factor-2 (FGF-2). Binding was reduced by only approximately 35% following chondroitinase treatment of the proteoglycan, indicating that the interaction is mediated primarily through the core protein rather than the glycosaminoglycan chains. Immunocytochemical studies also showed an overlapping localization of FGF-2 and phosphacan in the developing central nervous system. At concentrations of 10 microg protein/ml, both native phosphacan and the core protein obtained by chondroitinase treatment potentiated the mitogenic effect of FGF-2 (5 ng/ml) on NIH/3T3 cells by 75-90%, which is nearly the same potentiation as that produced by heparin at an equivalent concentration. Although studies on the role of proteoglycans in mediating the binding and mitogenic effects of FGF-2 have previously focused on cell surface heparan sulfate, our results indicate that the core protein of a chondroitin sulfate proteoglycan may also regulate the access of FGF-2 to cell surface signaling receptors in nervous tissue.  相似文献   

3.
We have studied the interactions of the nervous tissue-specific chondroitin sulfate proteoglycans neurocan and phosphacan with the extracellular matrix protein tenascin-R and two heparin-binding proteins, amphoterin and the heparin-binding growth-associated molecule (HB-GAM), using a radioligand binding assay. Both proteoglycans show saturable, high affinity binding to tenascin-R with apparent dissociation constants in the 2-7 nM range. Binding is reversible, inhibited in the presence of unlabeled proteoglycan, and increased by approximately 60% following chondroitinase treatment of the proteoglycans, indicating that the interactions are mediated via the core (glyco)proteins rather than by the glycosaminoglycan chains, which may in fact partially shield the binding sites. In contrast to their interactions with tenascin-C, in which binding was decreased by approximately 75% in the absence of calcium, binding of phosphacan to tenascin-R was not affected by the absence of divalent cations in the binding buffer, although there was a small but significant decrease in the binding of neurocan. Neurocan and phosphacan are also high affinity ligands of amphoterin and HB-GAM (Kd = 0.3-8 nM), two heparin-binding proteins that are developmentally regulated in brain and functionally involved in neurite outgrowth. The chondroitin sulfate chains on neurocan and phosphacan account for at least 80% of their binding to amphoterin and HB-GAM. The presence of amphoterin also produces a 5-fold increase in phosphacan binding to the neural cell adhesion molecule contactin. Immunocytochemical studies showed an overlapping localization of the proteoglycans and their ligands in the embryonic and postnatal brain, retina, and spinal cord. These studies have therefore revealed differences in the interactions of neurocan and phosphacan with the two major members of the tenascin family of extracellular matrix proteins, and also suggest that chondroitin sulfate proteoglycans play an important role in the binding and/or presentation of differentiation factors in the developing central nervous system.  相似文献   

4.
Platelet factor 4 (PF-4), a member of the alpha-chemokine subfamily of cytokines, activates human neutrophils independently of intracellular free calcium mobilization or binding to IL-8R. In the present study, we have identified and partially characterized a receptor for PF-4 on human neutrophils, which displays weak cross-reactivity with the IFN-gamma-inducible protein 10, but not with other alpha-chemokines such as IL-8, neutrophil-activating peptide 2, or melanoma growth-stimulatory activity (GRO alpha). Binding studies revealed that human neutrophils express a high number of receptors (Bmax approximately 7.6 x 10(6) sites/cell) of moderate affinity (Kd approximately 650 nM). The kinetics of PF-4-binding correlates with the proportion of PF-4 tetramers in solution and with the activation of neutrophils for exocytosis. Reduction of PF-4 binding and PF-4-induced exocytosis in the presence of various glycosaminoglycans or following treatment of cells with chondroitinase ABC (but not other glycosaminoglycan-degrading enzymes) altogether demonstrates that the PF-4 receptor is a proteoglycan of the chondroitin sulfate class. Cross-linking experiments with radiolabeled PF-4 revealed a receptor-ligand complex of approximately 250 kDa. Taken together, our data show that a distinct chondroitin sulfate proteoglycan represents specific receptors for tetrameric PF-4 on human neutrophils.  相似文献   

5.
SPACR (sialoprotein associated with cones and rods), is the major 147-150-kDa glycoprotein present in the insoluble interphotoreceptor matrix of the human retina. Immunocytochemistry localizes SPACR to the matrix surrounding rods and cones (Acharya, S., Rayborn, M. E., and Hollyfield, J. G. (1998) Glycobiology 8, 997-1006). From affinity-purified SPACR, we obtained seven peptide sequences showing 100% identity to the deduced sequence of IMPG1, a purported chondroitin 6-sulfate proteoglycan core protein, which binds peanut agglutinin and is localized to the interphotoreceptor matrix. We show here that SPACR is the most prominent 147-150-kDa band present in the interphotoreceptor matrix and is the gene product of IMPG1. SPACR is not a chondroitin sulfate proteoglycan, since it is not a product of chondroitinase ABC digestion and does not react to a specific antibody for chondroitin 6-sulfate proteoglycan. Moreover, the deduced amino acid sequence reveals no established glycosaminoglycan attachment site. One hyaluronan binding motif is present in the predicted sequence of SPACR. We present evidence that SPACR has a functional hyaluronan binding domain, suggesting that interactions between SPACR and hyaluronan may serve to form the basic macromolecular scaffold, which comprises the insoluble interphotoreceptor matrix.  相似文献   

6.
Protein tyrosine phosphatase zeta (PTPzeta/RPTPbeta) is a receptor-like protein tyrosine phosphatase specifically expressed in the brain. Alternative splicing produces three isoforms of this molecule: PTPzeta-A, the full-length form of PTPzeta; PTPzeta-B, the short form of PTPzeta; and PTPzeta-S, an extracellular variant. Here, we identified all these isoforms, including PTPzeta-B, as chondroitin sulfate proteoglycans, and characterized their carbohydrate modification and expression profiles in the rat brain. The level of PTPzeta-A expression was maintained during the prenatal period and decreased rapidly after birth. PTPzeta-S was expressed in a similar manner, although the postnatal decrease was gradual. In contrast, relatively constant amounts of PTPzeta-B were observed from embryonic day 13 (E13) through adulthood. PTPzeta-A and -S were constantly expressed only as proteoglycans during development, but a substantial amount of PTPzeta-B was detected in a non-proteoglycan form at E13-15. Moreover, PTPzeta-B did not contain LeX, HNK-1 carbohydrate, or keratan sulfate, although PTPzeta-A and -S were generally modified with these carbohydrates. L cells transfected with PTPzeta-A and -B cDNAs expressed these proteins as enzymatically active chondroitin sulfate proteoglycans. The PTPzeta-A and -B in L cells showed essentially similar localizations in cell cortical structures on immunofluorescence microscopy, although immature or processed forms of PTPzeta-A were accumulated additively in intracellular patchy structures. These results show that the three isoforms of PTPzeta are differentially regulated during development, and that the extracellular deleted region in PTPzeta-B is important for determination of carbohydrate modification.  相似文献   

7.
The method of affinity coelectrophoresis was used to study the binding of nine representative glycosaminoglycan (GAG)-binding proteins, all thought to play roles in nervous system development, to GAGs and proteoglycans isolated from developing rat brain. Binding to heparin and non-neural heparan and chondroitin sulfates was also measured. All nine proteins-laminin-1, fibronectin, thrombospondin-1, NCAM, L1, protease nexin-1, urokinase plasminogen activator, thrombin, and fibroblast growth factor-2-bound brain heparan sulfate less strongly than heparin, but the degree of difference in affinity varied considerably. Protease nexin-1 bound brain heparan sulfate only 1.8-fold less tightly than heparin (Kdvalues of 35 vs. 20 nM, respectively), whereas NCAM and L1 bound heparin well (Kd approximately 140 nM) but failed to bind detectably to brain heparan sulfate (Kd>3 microM). Four proteins bound brain chondroitin sulfate, with affinities equal to or a few fold stronger than the same proteins displayed toward cartilage chondroitin sulfate. Overall, the highest affinities were observed with intact heparan sulfate proteoglycans: laminin-1's affinities for the proteoglycans cerebroglycan (glypican-2), glypican-1 and syndecan-3 were 300- to 1800-fold stronger than its affinity for brain heparan sulfate. In contrast, the affinities of fibroblast growth factor-2 for cerebroglycan and for brain heparan sulfate were similar. Interestingly, partial proteolysis of cerebroglycan resulted in a >400-fold loss of laminin affinity. These data support the views that (1) GAG-binding proteins can be differentially sensitive to variations in GAG structure, and (2) core proteins can have dramatic, ligand-specific influences on protein-proteoglycan interactions.  相似文献   

8.
9.
By using polyclonal antiserum, which recognizes multiple proteoglycan core proteins, we isolated a cDNA species for an unknown chondroitin sulfate proteoglycan in bovine brain. Unexpectedly, DNA sequencing revealed that the cDNA encodes an open reading frame highly homologous to the human receptor-type protein-tyrosine phosphatase, RPTP beta. To prove that RPTP beta is a proteoglycan, we raised three polyclonal antibodies against extracellular and cytoplasmic domains of human RPTP beta. These antibodies have been shown to react with a smear band ranging from 350 to 500 kDa in human brain extracts. Digestion with chondroitinase ABC eliminated this smear and gave rise to a 310/300-kDa doublet band that was not detected without digestion, indicating that almost all of the RPTP beta molecules in the brain contain chondroitin sulfate chains. In the cerebellum, immunofluorescence staining of chondroitinase-treated sections revealed pericellular localization of RPTP beta in the external and internal granular layers. These data establish that RPTP beta is expressed constitutively as a chondroitin sulfate proteoglycan in the brain, and suggest that chondroitin sulfates may be an essential component for the physiological function of RPTP beta in vivo.  相似文献   

10.
Protein tyrosine phosphatase zeta (PTPzeta/RPTPbeta) is a proteoglycan-type receptor-like protein tyrosine phosphatase specifically expressed in the brain. In addition to the transmembrane form (PTPzeta-A), the extracellular splice variant (PTPzeta-S) occurs as a major soluble chondroitin sulphate proteoglycan in the brain. We prepared antibodies which specifically recognize PTPzeta-A and -S, and analysed the carbohydrate structures on the two PTPzeta isoforms in the developing chick brain. Immunoprecipitation experiments using these antibodies revealed that almost all of the keratan sulphate recognized by a monoclonal antibody (5D4) was exclusively bound to PTPzeta-A and PTPzeta-S. Addition of keratan sulphate to these proteoglycans markedly increased from embryonic day (E) 11, in contrast to the addition of Le(x) and HNK-1 carbohydrates, which gradually increased during development in accordance with expression of the core proteins, suggesting that keratan sulphate modification plays some specific roles. Moreover, at the early embryonic stage keratan sulphate was observed only in several restricted regions, especially at boundary regions such as the roof plate of the tectum, the zona limitans intrathalamica in the diencephalon, and the mesencephalon-metencephalon boundary. At the mesencephalon-metencephalon boundary, keratan sulphate modification of PTPzeta isoforms was specifically observed from E3 to E6 on a ring of cells encircling the neural tube and their radially oriented processes, which were identified as radial glial fibres. This expression pattern of keratan sulphate spatiotemporally corresponded well to the formation of the fovea isthmi, a groove separating the mesencephalon from the metencephalon. These results suggest that carbohydrates including keratan sulphate on PTPzeta isoforms play important roles in brain development by modulating the cell-cell and/or cell-substrate interactions mediated by these molecules.  相似文献   

11.
In this work, the 100-kDa neurotensin (NT) receptor previously purified from human brain by affinity chromatography (Zsürger, N., Mazella, J., and Vincent, J. P. (1994) Brain Res. 639, 245-252) was cloned from a human brain cDNA library. This cDNA encodes a 833-amino acid protein 100% identical to the recently cloned gp95/sortilin and was then designated NT3 receptor-gp95/sortilin. The N terminus of the purified protein is identical to the sequence of the purified gp95/sortilin located immediately after the furin cleavage site. The binding of iodinated NT to 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid-solubilized extracts of COS-7 cells transfected with the cloned cDNA was saturable and reversible with an affinity of 10-15 nM. The localization of the NT3 receptor-gp95/sortilin into intracellular vesicles was in agreement with previous results obtained with the purified receptor and with gp95/sortilin. Affinity labeling and binding experiments showed that the 110-kDa NT3 receptor can be partly transformed into a higher affinity (Kd = 0.3 nM) 100-kDa protein receptor by cotransfection with furin. This 100-kDa NT receptor corresponded to the mature form of the receptor. The NT3/gp95/sortilin protein is the first transmembrane neuropeptide receptor that does not belong to the superfamily of G-protein-coupled receptors.  相似文献   

12.
The A2a-adenosine binding subunit from rabbit striatal membranes was solubilized using 1% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate and was characterized using the antagonist radioligand [3H]8-[4-[[[[2-aminoethyl)amino]carbonyl]methyl]oxy] phenyl]-1,3-dipropylxanthine (XAC). The solubilized receptor was very stable, with 55% of the specific [3H]XAC binding remaining after storage for 15 days at 4 degrees C. The dissociation constant (Kd) for binding of [3H]XAC to solubilized A2 receptors was determined in saturation studies to be 4.0 nM, with a Bmax of 600 fmol/mg protein. Xanthine inhibitors displaced the specific binding of the adenosine antagonist [3H]XAC (in the presence of 50 nM 8-cyclopentyl-1,3-dipropylxanthine) at 25 degrees C, with Ki values consonant with the expected affinities at A2a receptors. Binding of [3H]XAC (1 nM) or the adenosine agonist [3H]2-(carboxyethylphenylethylamino)adenosine-5'-N-ethyl carboxamide (5 nM) to A2a receptors was diminished in the presence of 0.1 M Na+ in both membranes and solubilized preparations. Agonist binding was increased (by 280% for membranes and 180% for solubilized receptors), and antagonist binding was decreased in the presence of 10 mM Mg2+. Displacement of [3H]XAC by the agonist (R)-N6-phenylisopropyladenosine was biphasic, corresponding to high (IC50 = 188 nM, RH = 30%) and low (IC50 = 9730 nM, RL = 70%) affinity sites. Preincubation with 100 microM GTP (10 mM Mg2+) converted the high affinity binding to low affinity, suggesting that receptor and G-protein are dissociated by the guanine nucleotide. The solubilized receptor was more easily inactivated by exposure to the reducing agent dithiothreitol (IC50 = 3 mM) than in membranes (IC50 = 220 mM), suggesting increased accessibility of structurally essential disulfide bridges.  相似文献   

13.
Slide-binding and autoradiographic studies were performed on cryostat sections from brains of adult Sprague-Dawley rats and BALB C mice to describe the binding characteristics of the tetrapeptide [3H]TIPP, an antagonist with high specificity and affinity for the delta opioid receptors. Steady-state binding of [3H]TIPP to cryostat sections of brain paste was reached in 120-180 min of incubation. Specific [3H]TIPP binding resulted in maximal numbers of binding sites (Bmax) of 15.59 and 23.91 fmol/mg protein, and dissociation constants (Kd) of 0.46 and 0.85 nM for rat and mouse brain paste sections, respectively. TIPP displayed the highest affinity for delta opioid receptors in inhibiting specific [3H]TIPP binding, with IC50 values of 0.82 nM and 0.14 nM in rat and mouse brain sections, respectively. While DPDPE was also effective in displacing the specific binding of [3H]TIPP (IC50 = 3.18 +/- 0.53 nM and 0.63 +/- 0.42 nM in rat and mouse brain paste sections, respectively), other subclass-selective or nonopioid ligands were much less effective, or ineffective. Autoradiographic localization of [3H]TIPP binding revealed the characteristic distribution of delta opioid receptors in both species. In consequence of its antagonistic nature, and of its unnatural amino acid residue, which makes this ligand more resistant to biodegradation, [3H]TIPP is a superior ligand for evaluation of the binding characteristics and autoradiogaphic distribution of the delta opioid receptors.  相似文献   

14.
The in vitro actions were investigated of LY293111, a potent and selective leukotriene B4 (LTB4) receptor antagonist, on human neutrophils, human blood fractions, guinea pig lung membranes, and guinea pig parenchymal and tracheal strips. The IC50 for inhibiting [3H]LTB4 binding to human neutrophils was 17.6 +/- 4.8 nM. LY293111 inhibited LTB4-induced human neutrophil aggregation (IC50 = 32 +/- 5 nM), luminol-dependent chemiluminescence (IC50 = 20 +/- 2 nM), chemotaxis (IC50 = 6.3 +/- 1.7 nM), and superoxide production by adherent cells (IC50 = 0.5 nM). Corresponding responses induced by N-formyl-L-methionyl-L-leucyl-L-phenylalanine were inhibited by 100-fold higher concentrations of LY293111. LTB4 binding to guinea pig tissues and subsequent activation were also inhibited. The Ki for inhibition of [3H]LTB4 binding to lung membranes was 7.1 +/- 0.8 nM; IC50 for preventing binding of [3H]LTB4 to spleen membranes was 65 nM. The compound inhibited LTB4-induced contraction of guinea pig lung parenchyma. At 10 nM, LY293111 caused a parallel rightward shift of the LTB4 concentration-response curve. At higher concentrations, plots were shifted in a nonparallel manner, and maximum responses were depressed. LY293111 did not prevent antigen-stimulated contraction of sensitized trachea strips. At micromolar concentrations, LY293111 inhibited production of LTB4 and thromboxane B2 by plasma-depleted human blood stimulated with N-formyl-L-methionyl-L-leucyl-L-phenylalanine and thrombin. In addition, at these higher concentrations, formation of LTB4 by A23187-activated whole blood and conversion of arachidonic acid to LTB4 by a human neutrophil cytosolic fraction were inhibited. In summary, LY293111 is a second-generation LTB4 receptor antagonist with much improved potency in a variety of functional assay systems.  相似文献   

15.
Two nervous tissue-specific chondroitin sulfate proteoglycans, neurocan and phosphacan (the extracellular domain of protein-tyrosine phosphatase-zeta/beta), are high-affinity ligands of tenascin-C. Using portions of tenascin-C expressed as recombinant proteins in human fibrosarcoma cells, we have demonstrated both by direct radioligand binding assays and inhibition studies that phosphacan binding is retained in all deletion variants except those lacking the fibrinogen-like globe and that phosphacan binds to this single domain with nearly the same affinity (Kd approximately 12 nM) as to native or recombinant tenascin-C. However, maximum binding of neurocan requires both the fibrinogen globe and some of the adjacent fibronectin type III repeats. Binding of phosphacan and neurocan to intact tenascin-C, and of phosphacan to the fibrinogen globe, is significantly increased in the presence of calcium. Chondroitinase treatment of the proteoglycans did not affect their binding to either native tenascin-C or to any of the recombinant proteins, demonstrating that these interactions are mediated by the proteoglycan core proteins rather than through the glycosaminoglycan chains. These results are also consistent with rotary shadowing electron micrographs that show phosphacan as a rod terminated at one end by a globular domain that is frequently seen apposed to the fibrinogen globe in mixtures of phosphacan and tenascin-C. C6 glioma cells adhere to and spread on deletion variants of tenascin-C containing only the epidermal growth factor-like domains or the fibronectin type III repeats and the fibrinogen globe. In both cases cell adhesion was inhibited by similar concentrations of phosphacan, demonstrating that the fibrinogen globe is not necessary for this effect, which is apparently mediated by a direct action of phosphacan on the cells rather than by its interaction with the proteoglycan binding site on tenascin-C.  相似文献   

16.
OBJECTIVE: To determine whether the concentrations of proteoglycans and hyaluronan in human follicular fluid (FF) are associated with follicular volume, oocyte fertilization, and ET during IVF. DESIGN: The FF from individual follicles were collected. Enzyme-linked immunosorbent assay methods for quantification of a larger chondroitin sulfate proteoglycan and a smaller composite heparan-chondroitin sulfate proteoglycan were established. Hyaluronan and E2 were measured by RIA techniques. PATIENT(S): Sixteen infertile women participating in the IVF program. MAIN OUTCOME MEASURE(S): Concentrations of the proteoglycans, follicular volume, fertilization, and ET rates. RESULT(S): The follicles contained high concentrations of proteoglycans with an average of 0.8 mg/mL of FF, and approximately 70% consisted of the larger chondroitin sulfate proteoglycan, and 30% of the heparan-chondroitin sulfate proteoglycan. A negative correlation was found between the follicular volume, the chondroitin sulfate proteoglycan (r = -0.43), and hyaluronan (r = -0.56). The percentage of embryos developed in culture was significantly higher in follicles larger than 2 mL. A significant and 35% lower concentration of the chondroitin sulfate proteoglycan was found in larger follicles from which subsequent ET was observed. THe heparan-chondroitin sulfate proteoglycan and hyaluronan were both unrelated to fertilization and ET in vitro. CONCLUSION(S): Lower concentrations of chondroitin sulfate proteoglycan were associated with higher follicular volumes and greater fertilization and ET rates. These associations could merely reflect the maturation of the follicle or a role of the chondroitin sulfate proteoglycan in the fertilization process.  相似文献   

17.
Alpha 1 adrenoceptor binding sites have been characterized in prostatic tissue homogenates using radioligand receptor binding studies. The objective of the present study was to characterize and localize prostatic alpha 1 adrenoceptor binding sites using slide-mounted tissue sections and the ligand 3H-prazosin. The present study demonstrated that preincubation is not required; the optimal incubation interval is 40 minutes; and a 1-minute wash (once or twice) maximizes the proportion of specific 3H-prazosin binding. Saturation studies were performed at 8 different concentrations of 3H-prazosin ranging between 0.0625 nM. to 8.0 nM. The binding of 3H-prazosin was consistently saturable and of high affinity. The mean Kd and Bmax determined from 6 saturation studies was 4.16 x 10(-10) M. and 1.30 fmol./mg. wet weight, respectively. The pharmacology of these 3H-prazosin binding sites was characterized using competitive displacement experiments. The mean IC50 corrected for prazosin, phentolamine and yohimbine was 7.8 x 10(-10) M., 6.0 x 10(-9) M. and 2.1 x 10(-6) M. The rank order of the IC50 corrected values indicates that alpha 1 binding sites were measured under the assay conditions. In the present study, the mean values for Kd, Bmax and IC50 corrected are similar to values previously reported using prostatic tissue homogenates. Prostatic tissue sections were apposed to x-ray film after being incubated with 3 nM. 3H-prazosin (total prazosin binding) and 3 nM. 3H-prazosin + 8 microM. prazosin (nonspecific prazosin binding). The autoradiograms were analyzed using a computerized analyzing system. The specific radioactive densities of 3H-prazosin in the stroma and glandular epithelium were 1099 +/- 48 pCi/mg. and 163 +/- 42 pCi/mg. The present study validates the technique of assaying alpha 1 adrenoceptor binding sites on slide-mounted prostatic tissue sections and provides further evidence that alpha 1 adrenoceptor binding sites are localized primarily to the stromal elements of the prostate.  相似文献   

18.
Identification of the molecular mechanisms that determine specificity of coupling interactions between gastrin-releasing peptide receptors (GRPrs) and their cognate heterotrimeric GTP-binding proteins is a fundamental step in understanding the signal transduction cascade initiated by receptor-ligand interaction. To explore these mechanisms in greater detail, we have developed an in situ reconstitution assay in chaotrope-extracted membranes from mouse fibroblasts expressing the GRPr, and we have used it to measure GRPr-catalyzed binding of GTP gamma S to purified G protein alpha subunits. Binding studies with 125I-labeled [D-Tyr6]bombesin(6-13) methyl ester (125I-Tyr-ME), a GRPr specific antagonist, show a single binding site with a Kd = 1.4 nM +/- 0.4 (mean +/- SD, n = 3) and capacity of 15-22 pmol of receptor per mg of protein in the extracted membrane preparations, representing a 2- to 3-fold enrichment of binding sites compared with the membranes before extraction. Quantitative ligand displacement analysis using various unlabeled GRPr agonists shows a rank order of potency characteristic of the GRPr: bombesin > or = GRP > > neuromedin B. Reconstitution of urea extracted membranes with a purified G alpha q showed that receptor-catalyzed binding of GTP gamma S was dependent on agonist (GRP) and G beta gamma subunits. The EC50 for GRP was 3.5 nM, which correlates well with the reported Kd of 3.1 nM for GRP binding to GRPr expressed in mouse fibroblasts [Benya, R. V., et al. (1994) Mol. Pharmacol. 46, 235-245]. The apparent Kd for bovine brain G beta gamma in this assay was 60 nM, and the Km for squid retinal G alpha q was 90 nM. The GRPr-catalyzed binding of GTP gamma S is selective for G alpha q, since we did not detect receptor-catalyzed exchange using either G alpha i/o or G alpha t. These data demonstrate that GRPr can functionally couple to G alpha q but not to the pertussis toxin-sensitive G alpha i/o or retinal specific G alpha t. This in situ receptor reconstitution method will allow molecular characterization of G protein coupling to other heptahelical receptors.  相似文献   

19.
Comparison of the binding properties of non-glycosylated, glycosylated human leukemia inhibitory factor (LIF) and monoclonal antibodies (mAbs) directed at gp190/LIF-receptor beta subunit showed that most of the low affinity (nanomolar) receptors expressed by a variety of cell lines are not due to gp190. These receptors bind glycosylated LIF produced in Chinese hamster ovary cells (CHO LIF) (Kd = 6.9 nM) but not Escherichia coli-derived LIF or CHO LIF treated with endoglycosidase F. CHO LIF binding to these receptors is neither affected by anti-gp190 mAbs nor by anti-gp130 mAbs and is specifically inhibited by low concentrations of mannose 6-phosphate (Man-6-P) (IC50 = 40 microM), suggesting that they could be related to Man-6-P receptors. The identity of this LIF binding component with the Man-6-P/insulin-like growth factor-II receptor (Man-6-P/IGFII-R) was supported by several findings. (i) It has a molecular mass very similar to that of the Man-6-P/IGFII-R (270 kDa); (ii) the complex of LIF cross-linked to this receptor is immunoprecipitated by a polyclonal anti-Man-6-P/IGFII-R antibody; (iii) this antibody inhibits LIF and IGFII binding to the receptor with comparable efficiencies; (iv) soluble Man-6-P/IGFII-R purified from serum binds glycosylated LIF (Kd = 4.3 nM) but not E. coli LIF. The potential role of Man-6-P/IGFII-R in LIF processing and biological activity is discussed.  相似文献   

20.
XV454 demonstrated high potency (IC50 = 14-25 nM) in inhibiting human platelet aggregation induced by adenosine diphosphate (ADP, 10 microM), thrombin receptor agonist peptide (TRAP) (10 microM), or collagen (20 microg/ml). XV454 exhibited a high degree of selectivity for platelet alpha(IIb)beta3 in comparison with c7E3, which is a nonspecific antagonist for both alpha(IIb)beta3 and alpha(v)beta3. Both XV454 and c7E3 bind with high affinity to either activated (A) or unactivated (U) human, baboon, or canine platelets. XV454 binds with a relatively higher affinity [Kd = 0.5 nM (A), 0.6 nM (U)] as compared with c7E3 [Kd = 9.1 nM (A), 9.2 (U) nM]. XV454 demonstrated a tight association with human, baboon, and, to a lesser extent, with canine platelets (t(1/2) of dissociation = 110 +/- 6, 80 +/- 10, and 23 +/- 2 min, respectively). Both c7E3 and XV454 associate tightly with a slower dissociation rate with unactivated human platelets: t(1/2) of 42 and 116 min, respectively. In non-human primates, oral (0.1 mg/kg, p.o.) and intravenous (0.05 mg/kg, i.v. bolus administration of XV454 methyl ester pro-drug resulted a long-lasting maximal antiplatelet efficacy for < or = 72 h with significant but reversible prolongation of bleeding time and without effects on platelet count, clinical chemistry, or hemodynamic profile. In conclusion, XV454 represents a potent antiplatelet agent in inhibiting platelet aggregation along with a high affinity and relatively slow dissociation rate from human platelet GPIIb/IIIa receptors that allow a long-lasting antiplatelet efficacy after single i.v. or oral administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号