首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Protein kinase C (PKC) family members play significant roles in a variety of intracellular signal transduction processes, but information about the substrate specificities of each PKC family member is quite limited. In this study, we have determined the optimal peptide substrate sequence for each of nine human PKC isozymes (alpha, betaI, betaII, gamma, delta, epsilon, eta, mu, and zeta) by using an oriented peptide library. All PKC isozymes preferentially phosphorylated peptides with hydrophobic amino acids at position +1 carboxyl-terminal of the phosphorylated Ser and basic residues at position -3. All isozymes, except PKC mu, selected peptides with basic amino acids at positions -6, -4, and -2. PKC alpha, -betaI, -betaII, -gamma, and -eta selected peptides with basic amino acid at positions +2, +3, and +4, but PKC delta, -epsilon, -zeta, and -mu preferred peptides with hydrophobic amino acid at these positions. At position -5, the selectivity was quite different among the various isozymes; PKC alpha, -gamma, and -delta selected peptides with Arg at this position while other PKC isozymes selected hydrophobic amino acids such as Phe, Leu, or Val. Interestingly, PKC mu showed extreme selectivity for peptides with Leu at this position. The predicted optimal sequences from position -3 to +2 for PKC alpha, -betaI, -betaII, -gamma, -delta, and -eta were very similar to the endogenous pseudosubstrate sequences of these PKC isozymes, indicating that these core regions may be important to the binding of corresponding substrate peptides. Synthetic peptides based on the predicted optimal sequences for PKC alpha, -betaI,-delta, -zeta, and -mu were prepared and used for the determination of Km and Vmax for these isozymes. As judged by Vmax/Km values, these peptides were in general better substrates of the corresponding isozymes than those of the other PKC isozymes, supporting the idea that individual PKC isozymes have distinct optimal substrates. The structural basis for the selectivity of PKC isozymes is discussed based on residues predicted to form the catalytic cleft.  相似文献   

2.
Four cDNAs encoding phosphoribosyl diphosphate (PRPP) synthase were isolated from a spinach (Spinacia oleracea) cDNA library by complementation of an Escherichia coli Deltaprs mutation. The four gene products produced PRPP in vitro from ATP and ribose-5-phosphate. Two of the enzymes (isozymes 1 and 2) required inorganic phosphate for activity, whereas the others were phosphate independent. PRPP synthase isozymes 2 and 3 contained 76 and 87 amino acid extensions, respectively, at their N-terminal ends in comparison with other PRPP synthases. Isozyme 2 was synthesized in vitro and shown to be imported and processed by pea (Pisum sativum) chloroplasts. Amino acid sequence analysis indicated that isozyme 3 may be transported to mitochondria and that isozyme 4 may be located in the cytosol. The deduced amino acid sequences of isozymes 1 and 2 and isozymes 3 and 4 were 88% and 75% identical, respectively. In contrast, the amino acid identities of PRPP synthase isozyme 1 or 2 with 3 or 4 was modest (22%-25%), but the sequence motifs for binding of PRPP and divalent cation-nucleotide were identified in all four sequences. The results indicate that PRPP synthase isozymes 3 and 4 belong to a new class of PRPP synthases that may be specific to plants.  相似文献   

3.
2-Carboxybenzaldehyde dehydrogenase from the phenanthrene-degrading bacterium Nocardioides sp. strain KP7 was purified and characterized. The purified enzyme had a molecular mass of 53 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 205 kDa by gel filtration chromatography. Thus, the homotetramer of the 53-kDa subunit constituted an active enzyme. The apparent Km and kcat values of this enzyme for 2-carboxybenzaldehyde were 100 microM and 39 s(-1), respectively, and those for NAD+ were 83 microM and 32 s(-1), respectively. The structural gene for this enzyme was cloned and sequenced. The length of the gene was 1,455 bp. The nucleotide sequence of the 10,279 bp of DNA around the gene for 2-carboxybenzaldehyde dehydrogenase was also determined, and seven open reading frames were found in this DNA region. These were the genes for 1-hydroxy-2-naphthoate dioxygenase (phdI) and trans-2'-carboxybenzalpyruvate aldolase (phdJ), orf1, the gene for 2-carboxybenzaldehyde dehydrogenase (phdK), orf2/orf3, and orf4. The amino acid sequence of the orf1 product was similar to that of the aromatic hydrocarbon transporter gene (pcaK) in Pseudomonas putida PRS2000. The amino acid sequence of the orf4 product revealed a similarity to cytochrome P-450 proteins. The region between phdK and orf4 encoded orf2 and orf3 on different strands. The amino acid sequences of the orf2 and orf3 products exhibited no significant similarity to the reported sequences in protein databases.  相似文献   

4.
Two forms of a proteinase, KN-BJ 1 and 2, were purified to homogeneity from the venom of Bothrops jararaca. In SDS/PAGE reduced KN-BJ 1 and 2 migrated as single bands with molecular masses of 38 kDa and 39 kDa. The two enzymes have similar N-terminal amino acid sequences and specific activities on synthetic chromogenic substrates, and both release bradykinin from bovine low-molecular-mass kininogen. KN-BJ 1 and KN-BJ 2 clot fibrinogen with specific activities of 245 NIH U/mg and 219 NIH U/mg, releasing only fibrinopeptide A. The amidolytic, kinin-releasing and coagulant activities are inhibited by phenylmethylsulfonyl fluoride, demonstrating that KN-BJ is a serine proteinase. Benzamidine derivatives, which are competitive inhibitors of trypsin-like proteinases, also inhibited the amidolytic activity of KN-BJ. A cDNA clone (HS104, 2.2 kb) has been isolated from a cDNA library of B. jararaca venom glands with an ORF of 771 bp. The deduced amino acid sequence contains segments that are identical to the sequences of the N-terminus and three tryptic peptides of KN-BJ 2. Therefore, the cDNA is believed to represent the gene of KN-BJ 2. The deduced amino acid sequence indicates that KN-BJ 2 is synthesized as a prezymogen of 257 amino acids with a putative signal peptide of 18 amino acids and an activating peptide of six amino acid residues. The sequence of 233 amino acids representing the mature enzyme exhibits high similarity to sequences of serine proteinases isolated from crotalid venoms.  相似文献   

5.
PURPOSE: To identify the retinal pigment epithelium (RPE) surface antigen recognized by the monoclonal antibody RET-PE2. METHODS: A lambda bacteriophage complementary DNA (cDNA) expression library, representing the rat RPE cell line RPE-J, was constructed and screened with the RET-PE2 monoclonal antibody. Transient transfections of the RET-PE2 cDNA, immunofluorescence stainings of tissue sections or cultured cells, and Western blot analyses of tissue and cell detergent extracts served to prove that the protein resulting from expression of the cDNA is the RET-PE2 antigen. RESULTS: Three independent cDNAs were cloned that shared overlapping sequences. Sequence alignment with EMBL database entries revealed identity to the published cDNA of CE-9/OX-47, a member of the immunoglobulin superfamily. One of the clones encoded the entire open reading frame of CE-9. The expression pattern of the RET-PE2 antigen matched that of CE-9, which is widely expressed. Chinese hamster ovary cells transiently transfected with the RET-PE2 cDNA produced a membrane-localized protein that was recognized by RET-PE2 and CE-9 antibodies. CONCLUSIONS: The antibody RET-PE2 recognizes the CE-9/OX47 gene product, a transmembrane protein of the immunoglobulin superfamily. Contrary to results reported earlier, RET-PE2 immunoreactivity is widely distributed among different rat tissues--kidney, liver, and testis. In epithelia other than the adult RPE, it is confined to the basolateral plasma membrane. Its apical polarization in the RPE of adult rats supports earlier findings that some proteins that are basolateral in other epithelia exhibit reversed polarity in the RPE.  相似文献   

6.
7.
Previously, we provided evidence that cysteine conjugate S-oxidase (S-oxidase) activities of rat liver and kidney microsomes may be associated with flavin-containing monooxygenases (FMOs). In this study, the biochemical properties of these activities were further investigated. When NADPH was replaced by NADH, the S-oxidase activities were reduced significantly. Removal of the flavin moiety from microsomes significantly reduced the S-oxidase activities; however, addition of exogenous FAD or FMN restored the activities of the flavin-depleted microsomes. Solubilization of hepatic or renal microsomes with Emulgen 911, Nonidet P-40, Triton X-100, or 3-[(3-cholamidopropyl)dimethyl-ammonio]-1- propane sulfate or inclusion of the sulfhydryl-reactive agents Hg2+, N-ethylmaleimide, or iodoacetamide did not affect the S-oxidase activities, whereas solubilization of either hepatic or renal microsomes by cholate or heating of renal microsomes in the absence of NADPH significantly reduced the S-oxidase activities. In addition to male rat hepatic and renal microsomes, the S-oxidase activities were detected in lung microsomes of male rats and hepatic and renal microsomes of male mice and female rats and rabbits. The male rat kidney maintained the highest S-oxidase activity of all species and tissues examined. Whereas the aforementioned results provided further evidence for the S-oxidase activities being associated with FMOs, unambiguous evidence for this hypothesis was provided by the purification of the activities from rat liver (580-fold) and kidney (700-fold) microsomes and by the use of the isolated proteins in polyacrylamide gel electrophoresis, flavin content determinations, amino-terminal amino acid sequence analysis, amino acid composition analysis, and substrate kinetic studies. The findings that the S-oxidases were immunoreactive with antibodies raised against the pig liver 1A1 isozyme but not with antibodies raised against the rabbit lung 1B1 isozyme and that the liver S-oxidase amino-terminal amino acid sequence was more comparable to the amino-terminal amino acid sequences of pig and rabbit liver 1A1 isozymes than to those of rabbit lung 1B1 and liver 1D1 isozymes provide evidence that the S-oxidases are related to the known FMO 1A1 isozymes.  相似文献   

8.
Xanthobacter flavus, a gram-negative facultatively autotrophic bacterium, employs the Calvin cycle for the fixation of carbon dioxide. Cells grown under autotrophic growth conditions possess an Fe(2+)-dependent fructosebisphosphate (FBP) aldolase (class II) in addition to a class I FBP aldolase. By nucleotide sequencing and heterologous expression in Escherichia coli, genes encoding transketolase (EC 2.2.1.1.; CbbT) and class II FBP aldolase (EC 4.1.2.13; CbbA) were identified. A partial open reading frame encoding a protein similar to pentose-5-phosphate 3-epimerase was identified downstream from cbbA. A phylogenetic tree of transketolase proteins displays a conventional branching order. However, the class II FBP aldolase protein from X. flavus is only distantly related to that of E. coli. The autotrophic FBP aldolase proteins from X. flavus, Alcaligenes eutrophus, and Rhodobacter sphaeroides form a tight cluster, with the proteins from gram-positive bacteria as the closest relatives.  相似文献   

9.
We identify a novel subtype of adenylate kinase, which is the 4th adenylate kinase (AK4), in the vertebrate. AK4 mRNA is expressed in the mammalian central nervous system in a region-specific manner from the middle stage of embryogenesis to the adulthood in the rodent. The presence of three isozymes of adenylate kinase (AK1, AK2 and AK3) that maintains the homeostasis of adenine and guanine nucleotide composition has been reported in the vertebrate. Obtained mouse AK4 cDNA is 3667 bp in size. The predicted open reading frame consists of 223 amino acid residues. Rat AK4 cDNA is also obtained, and the predicted open reading frame is the same length as that of the mouse. The predicted rat AK4 molecule shows 97.8% homology with mouse AK4. Rat AK4 protein is distinct from rat AK3, 53.8% homologous with rat AK3, although the adenylate kinase signature and the mitochondrial energy transfer protein signature are found in both sequences. Interestingly, rat AK4 is 89.2% homologous with the human AK3 over 223 amino acid residues and rat AK3 is 53.7% homologous with the human AK3 indicating that the reported human AK3 actually belongs to the AK4 group (therefore, it should be referred to as human AK4). Although the sequence of AK4 is most similar to that of AK3 among the AK isozymes, its in vivo expression is completely different from AK3; AK4 mRNA is expressed in the pyramidal cells in the hippocampus (mainly in the subfield CA3), the granular cells in the cerebellum, nasal neuroepithelium and the liver while AK3 mRNA is expressed ubiquitously in the body. It is probable that AK4 acts on the specific mechanism of energy metabolism rather than control of the homeostasis of the ADP pool ubiquitously.  相似文献   

10.
The fructose-1,6-biphosphate aldolase (EC 4.1.2.13) from Staphylococcus aureus ATCC 12 600 was purified and biochemically investigated. It was found that this aldolase belongs to the class I type of aldolases since the fructose-1,6-bisphosphate cleavage activity was insensitivity to high levels of EDTA. Like class I aldolases of higher organisms, the S. aureus aldolase activity is inhibited on incubation with the substrate dihydroxyacetone-phosphate in the presence of NaBH4. Furthermore, the aldolase activity is not stimulated by monovalent or divalent cations. This enzyme exhibits an extreme stability to high temperature, acid and base. The purified enzyme is not activated after heating at 97 degrees C for 1.6 h. An incubation at 130 degrees C for 10 min is necessary to destroy irreversibly the activity of the aldolase. The optimal temperature for activity, however, is 37 degrees C. It is a monomer with a molecular weight of about 33,000 and exhibits a relatively broad pH optimum ranging over pH 7.5-9.0. Apart from fructose 1,6-bisphosphate as substrate (Km = 0.045 mM), this aldolase also revealed activity with fructose 1-phosphate (Km = 25 mM). The pH of the isoelectric point lies between 3.95 and 4.25.  相似文献   

11.
Poly(ADP)-ribose polymerase (PADPRP) has been purified to apparent homogeneity from suspension cultures of the maize (Zea mays) callus line. The purified enzyme is a single polypeptide of approximately 115 kD, which appears to dimerize through an S-S linkage. The catalytic properties of the maize enzyme are very similar to those of its animal counterpart. The amino acid sequences of three tryptic peptides were obtained by microsequencing. Antibodies raised against peptides from maize PADPRP cross-reacted specifically with the maize enzyme but not with the enzyme from human cells, and vice versa. We have also characterized a 3.45-kb expressed-sequence-tag clone that contains a full-length cDNA for maize PADPRP. An open reading frame of 2943 bp within this clone encodes a protein of 980 amino acids. The deduced amino acid sequence of the maize PADPRP shows 40% to 42% identity and about 50% similarity to the known vertebrate PADPRP sequences. All important features of the modular structure of the PADPRP molecule, such as two zinc fingers, a putative nuclear localization signal, the automodification domain, and the NAD+-binding domain, are conserved in the maize enzyme. Northern-blot analysis indicated that the cDNA probe hybridizes to a message of about 4 kb.  相似文献   

12.
BACKGROUND: Yeast pyruvate kinase (PK) catalyzes the final step in glycolysis. The enzyme therefore represents an important control point and is allosterically activated by fructose-1,6-bisphosphate (FBP). In mammals the enzyme is found as four different isozymes with different regulatory properties: two of these isozymes are produced by alternate splicing. The allosteric regulation of PK is directly related to proliferation of certain cell types, as demonstrated by the expression of an allosterically regulated isozyme in tumor cells. A model for the allosteric transition from the inactive (T) state to the active (R) state has been proposed previously, but until now the FBP-binding site had not been identified. RESULTS: We report here the structures of PK from yeast complexed with a substrate analog and catalytic metal ions in the presence and absence of bound FBP. The allosteric site is located 40 A from the active site and is entirely located in the enzyme regulatory (C) domain. A phosphate-binding site for the allosteric activator is created by residues encoded by a region of the gene corresponding to the alternately spliced exon of mammalian isozymes. FBP activation appears to induce several conformational changes among active-site sidechains through a mechanism that is most likely to involve significant domain motions, as previously hypothesized. CONCLUSIONS: The structure and location of the allosteric activator site agrees with the pattern of alternate genetic splicing of the PK gene in multicellular eukaryotes that distinguishes between a non-regulated isozyme and the regulated fetal isozymes. The conformational differences observed between the active sites of inactive and fully active PK enzymes is in agreement with the recently determined thermodynamic mechanism of allosteric activation through a 'metal relay' that increases the affinity of the enzyme for its natural phosphoenolpyruvate substrate.  相似文献   

13.
Two acylphosphatase isoenzymes have been purified from Lamna nasus muscle, and their complete amino acid sequences have been determined. The former (E1) consists of 99 amino acid residues, while the latter (E2) consists of 102 residues. Both are acetylated at their N termini. E1 has the FFRK active site motif characteristic of all common-type acylphosphatase isoenzymes, whereas E2 contains the CFRM active site motif characteristic of all muscle-type acylphosphatase isoenzymes. They have quite similar kinetic properties. The comparison of sequences of fish E1 and E2 isoenzymes with other known mammalian and bird acylphosphatases reveals that the E2 isoenzyme has an N terminus tail, four residues long, similar to those previously found in all known bird species muscle-type isoenzymes. Among organ-common-type acylphosphatases about 50% of residues are completely conserved, whereas about 60% of muscle-type acylphosphatase residues are completely conserved, indicating that the latter type of isoenzyme has a slower evolutionary rate than the former. The sequences of E1 and E2 acylphosphatases from L. nasus represent the first primary structures of this kind of enzyme determined among fish species.  相似文献   

14.
Atlantic cod (Gadus morhua) transferrin cDNAs were isolated from a liver cDNA library using a cod transferrin-derived polymerase chain reaction product as a hybridization probe. The composite nucleotide sequence of two overlapping clones was 2223 bp in length excluding the poly(A) sequence and was equivalent to 87% of the 3' end of the Atlantic salmon transferrin cDNA sequence. Comparison of the deduced amino acid sequence of cod, salmon, Xenopus and several mammalian transferrins revealed that the two fish sequences are more similar with respect to their amino acid sequence and the position of additions/deletions than to other vertebrate transferrins. Conservation of the iron-binding domains and cysteine residues involved in disulphide bridges indicates that all transferrins share similar tertiary structure and support the hypothesis that extant vertebrate transferrin genes were derived from a gene duplication before the divergence of fish, frogs and mammals. Cod transferrin mRNA was detected in both brain and liver RNA and to a much lesser extent in RNA isolated from kidney and heart in contrast to salmon and several other vertebrates in which the transferrin gene is not expressed in brain.  相似文献   

15.
16.
The cDNAs and genes for two isozymes of cytochrome P450nor of the fungus Cylindrocarpon tonkinense, P450nor1 and P450nor2, were cloned and sequenced. Their deduced amino acid sequences respectively showed 83 and 70% identity to that of P450nor of Fusarium oxysporum, and 69% identity to each other. The genes for P450nor1 and P450nor2 were termed, respectively, CYP 55A2 and CYP 55A3. The cDNA for P450nor1 contained a targeting-like presequence upstream the N-terminus of mature protein whereas that for P450nor2 did not, suggesting their different intracellular localisations. We also succeeded in expressing these P450nor isoforms in the host-vector system of the yeast Saccharomyces cerevisiae. We purified one of the recombinant proteins, P450nor of F oxysporum. Little difference could be observed between the native and recombinant proteins in catalytic and spectroscopic properties. We constructed chimeric proteins of P450nor of F oxysporum and P450nor2 which are different in their specificity against the electron donors: reduced pyridine nucleotides. The specificity of chimeric proteins against NADH/NADPH showed that the specificity is determined by the N-terminal half of protein. We found a consensus amino acid sequence between three isoforms of P450nor, A-X-G-X-X-A, similar to the NAD-binding motif G-X-G-X-X-G/A in the region that corresponds to the B'-helix in P450cam.  相似文献   

17.
18.
A cDNA encoding human fast skeletal beta troponin T (beta TnTf) has been isolated and characterized from a fetal skeletal muscle library. The cDNA insert is 1,000 bp in length and contains the entire coding region of 777 bp and 5' and 3' untranslated (UT) segments of 12 and 211 bp, respectively. The 3' UT segment shows the predicted stem-loop structure typical of eukaryotic mRNAs. The cDNA-derived amino acid sequence is the first available sequence for human beta TnTf protein. It is encoded by a single-copy gene that is expressed in a tissue-specific manner in fetal and adult fast skeletal muscles. Although the human beta TnTf represents the major fetal isoform, the sequence information indicates that this cDNA and the coded protein are quite distinct from the fetal and neonatal TnTf isoforms reported in other mammalian fetal muscles. The hydropathy plot indicates that human beta TnTf is highly hydrophilic along its entire length. The protein has an extremely high degree of predicted alpha-helical content involving the entire molecule except the carboxy-terminal 30 residues. Comparative sequence analysis reveals that the human beta TnTf shares a high level of sequence similarity in the coding region with other vertebrate TnTf and considerably reduced similarity with slow skeletal and cardiac TnT cDNAs. The TnT isoforms have a large central region consisting of amino acid residues 46-204 which shows a high sequence conservation both at the nucleotide and amino acid levels. This conserved region is flanked by the variable carboxy-terminal and an extremely variable amino-terminal segment. The tropomyosin-binding peptide of TnT, which is represented by amino acid residues 47-151 and also includes a part of troponin I binding region, is an important domain of this central segment. It is suggested that this conserved segment is encoded by an ancestral gene. The variable regions of vertebrate striated TnT isoforms reflect the subsequent addition and modification of genomic sequences to give rise to members of the TnT multigene family.  相似文献   

19.
Primers having designs based on highly conserved stretches in the deduced amino acid sequences of chitin synthase (CHS) genes were used in PCR reactions to amplify 600 bp and 366 bp products from the genomic DNA of three major causal agents of chromoblastomycosis. Cloning and sequencing of the PCR products of one of these fungi, Fonsecaea pedrosoi, identified three CHS sequences designated as FpCHS1, FpCHS2 and FpCHS3. FpCHS1 and FpCHS2 were homologous to regions of CHS1 and CHS2 of Saccharomyces cerevisiae, and their derived amino acid sequences fell into chitin synthase classes I and II, respectively. FpCHS3 was homologous to a region of the CAL1/CSD2 gene of S. cerevisiae, which codes for the chitin synthase three (Chs3) enzyme in that fungus. Phylogenetic trees constructed using the deduced amino acid sequences of PCR-amplified CHS products from many fungi clustered F. pedrosoi with other dematiaceous fungi, providing new molecular evidence for the genetic relatedness of these organisms. The identification of these CHS genes in F. pedrosoi will facilitate future studies of the functional roles of chitin synthases in the unique in vivo dimorphism exhibited by chromoblastomycotic fungi.  相似文献   

20.
Germinating barley produces two alpha-amylase isozymes, AMY1 and AMY2, having 80% amino acid (aa) sequence identity and differing with respect to a number of functional properties. Recombinant AMY1 (re-AMY1) and AMY2 (re-AMY2) are produced in yeast, but whereas all re-AMY1 is secreted, re-AMY2 accumulates within the cell and only traces are secreted. Expression of AMY1::AMY2 hybrid cDNAs may provide a means of understanding the difference in secretion efficiency between the two isozymes. Here, the efficient homologous recombination system of the yeast, Saccharomyces cerevisiae, was used to generate hybrids of barley AMY with the N-terminal portion derived from AMY1, including the signal peptide (SP), and the C-terminal portion from AMY2. Hybrid cDNAs were thus generated that encode either the SP alone, or the SP followed by the N-terminal 21, 26, 53, 67 or 90 aa from AMY1 and the complementary C-terminal sequences from AMY2. Larger amounts of re-AMY are secreted by hybrids containing, in addition to the SP, 53 or more aa of AMY1. In contrast, only traces of re-AMY are secreted for hybrids having 26 or fewer aa of AMY1. In this case, re-AMY hybrid accumulates intracellularly. Transformants secreting hybrid enzymes also accumulated some re-AMY within the cell. The AMY1 SP, therefore, does not ensure re-AMY2 secretion and a certain portion of the N-terminal sequence of AMY1 is required for secretion of a re-AMY1::AMY2 hybrid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号