首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of sintering processes, such as open sintering, sintering inside a closed crucible, and sintering within a powder bed, on the microstructure and VI characteristics of ZnO–Bi2O3-based varistor ceramics was investigated at sintering temperatures in the range 1000–1200 °C. The results from the experiments showed that the microstructure and electrical properties of the samples varied according to the sintering method and temperature. Optimal values for the electrical characteristics of the varistor ceramics by different sintering processes were obtained when the sintering was conducted at 1100 °C. At the same sintering temperature, the different processes affected the properties differently. At 1000 °C, the samples sintered within a powdered bed showed better electrical properties than those subjected to the other two processes, while at 1100 or 1200 °C, the samples sintered in an open crucible exhibited the best electrical properties.  相似文献   

2.
This work aimed to examine the performance of the hybrid sintering of clay ceramic in a microwave furnace, compared to the sintering process in a conventional furnace. The raw materials were subjected to X-ray fluorescence, loss on ignition (LOI), X-ray diffraction, particle size distribution, real specific mass, and thermogravimetric analyses. The red clay ceramic mass was prepared, extruded, pre-sintered in a conventional furnace at 600°C/60 min, and sintered at temperatures between 700 °C and 1100 °C. The sintering conventional (resistive oven) was carried out for 60 min with a heating rate of 10°C/min. In the microwave furnace, the sintering times were 5, 10, and 15 min, with a heating rate of 50°C/min, with a sintering chamber coated with silicon carbide (susceptor). The sintered specimens were characterized according to linear shrinkage, water absorption, apparent porosity, apparent specific mass, X-ray diffraction, Raman spectroscopy analysis, spectroscopy analysis in the ultraviolet and visible regions, microhardness, and scanning electron microscopy. The results showed that microwave sintering promoted an increase in the microhardness and apparent specific mass, and reduction in water absorption and apparent porosity values, due to greater densification in the microstructure. The best results occurred for specimens sintered at 1100°C.  相似文献   

3.
High strength porous alumina was fabricated by spark plasma sintering (SPS) at temperatures between 1000 and 1200 °C with nanocrystalline Al(OH)3 as the starting powder without any seeds, dopants or inclusions. Decomposition of the Al(OH)3 produced a series of transitional alumina phases depending on sintering temperature and pressure and finally the stable α-alumina phase was obtained. A network of continuous pores with unimodal pore size distribution was estimated by mercury porosimetry and BET surface area measurements, with the porosity ranging between 20% and 60% based on sintering conditions. Predominance of fine grains and extensive necking between them led to better strength in the sintered samples. The bending strength of the sintered compacts rapidly increased with sintering temperature while retaining reasonable porosity suitable for practical applications. The results clearly indicate that in situ phase formation of α-Al2O3 and θ-Al2O3 provides strength and porosity, respectively. Phase transformation, pore morphology and microstructure evolution were also studied.  相似文献   

4.
Ammonium aluminum carbonate hydroxide (AACH) whiskers prepared by hydrothermal technique were employed as precursor material for development of porous alumina. After compaction of AACH whiskers at 8 bars, calcination was performed at 650?°C followed by sintering at different temperatures. The sintered samples were characterized by XRD, FTIR, SEM and mercury intrusion porosimetry. Mechanical strength was determined by compression testing. At sintering temperatures of 1200?°C to 1400?°C, the % age porosity was around 80%. At 1500?°C, the percentage porosity decreased to 71%. The as-prepared AACH consisted of bundles of whiskers with diameters as thick as 0.7?µm, while an individual whisker had a diameter of about 100?nm with an aspect ratio of about 33. A two-phase mixture consisting of θ- and α-alumina was obtained at 1100?°C, while at 1200?°C and above, single phase α-alumina was formed. θ-alumina retained the bundle-like morphology. However, transformation to α-alumina was accompanied by formation of bead-like morphology. These beads were joined together through necks/stems within the whiskers as well as across the parallel-lying whiskers. These necks grew at 1300?°C to form aggregates with smooth surfaces. At 1400?°C, these aggregates started joining with each other by neck formation and at 1500?°C, a three-dimensional network was formed. For sintering temperatures of up to 1400?°C, pores with sizes around 260?nm were very stable. At 1500?°C, significant pore growth took place along with an overall densification. Therefore, number of pores with sizes of around 260?nm decreased and those with sizes around 10?µm, 1?µm and 5?nm increased. The compression strength of samples sintered at 1100?°C to 1300?°C was in the range of 3.4–4.3?MPa. At 1400?°C, the strength increased to 5.2?MPa, while at 1500?°C, it jumped to 10.8?MPa due to the formation of three-dimensional network.  相似文献   

5.
Easy sinterable Ti3SiC2 powder was synthesized from a powder mixture with a molar ratio of 1.0 Ti, 0.3 Al, 1.2 Si, and 2.0 TiC by heating at 1200°C in the flowing Ar. Here, the Al powder acts as a deoxidation agent and provides a liquid phase for the reaction. The powder compacts subjected to pressureless sintering at 1300°C in Ar had a relative density up to 99%. The results of chemical analysis and the measured lattice constant suggest that the Al–Si liquid phase was formed at approximately 1200°C and that liquid‐phase sintering was promoted by the 0.1 molar ratio of Al and the 0.2 molar ratio of Si remaining in excess. The three‐point bending strength, fracture toughness, and electrical resistivity of the sintered samples were 380 MPa, 4.1 MPa m1/2, and 0.34μΩm, respectively.  相似文献   

6.
A spark plasma sintering (SPS) process has been explored to densify FJS-lunar soil simulants for structural applications in space explorations. The effect of SPS conditions, such as temperature and pressure, on the densification behavior, phase transformation, microstructural evolution, and mechanical properties of FJS-1 have been examined by conducting the X-ray diffraction analysis, electron microscopy imaging, and nano/micro indentation testing. Test analysis results were also compared to results from the FJS-1 powder and sintered samples without pressure. The FJS-1 powder was composed of sodian anorthite, augite, pigeonite, and iron titanium oxide. When FJS-lunar soil simulants were sintered without pressure, the main phase evolved from sodian anorthite to the intermediate sodian anorthite, jadeite and glass, and iron titanium oxide at 1000°C, which were further transformed into filiform and feather-shaped augite and schorlomite at 1100°C. Most densification processes in pressureless sintering occurred at 1050°C-1100°C. During the SPS process, the main phases were sodian anorthite, pigeonite, and iron titanium oxide at 900°C. These phases were transformed to sodian anorthite, glass, and feather-shaped augite at 1000°C and 1050°C, with the nucleation of dendritic schorlomite at 1050°C. Significant densification by SPS can be observed as low as 900°C, which indicates that the application of pressure can substantially lower the sintering temperature. The SPSed samples showed higher Vickers microhardness than the pressureless sintered samples. The mechanical properties of the local phases were represented by the contour maps of elastic modulus and nanohardness. Multiscale mechanical test results along with the microstructural characteristics further imply that the SPS can be considered a promising in-situ resource utilization (ISRU) method to densify lunar soils.  相似文献   

7.
《Ceramics International》2019,45(12):14697-14703
To warrant long-term reliability for application of electrolytes in solid state batteries also mechanical properties have to be considered. Current work concentrates on Li1+xAlxTi2-x(PO4)3 (LATP), which based on its conductivity is a very promising material. Effect of sintering temperature (950, 1000, 1050, 1100 °C) on mechanical properties and conductivity was tested. Impedance tests were carried out and as main focus of the work the mechanical behavior of LATP samples was determined. The impedance tests results revealed that LATP sintered at 1100 °C had the highest ion conductivity. The LATP sintered at 1100 °C revealed also the highest elastic modulus and hardness, which appeared to be related mainly to a smaller lattice parameter with additional effects of lower porosity especially when tested at higher loads. The results indicate that enhancement of both mechanical behavior and conductivity requires lowering secondary phase content and densifying the microstructure of the material.  相似文献   

8.
The possibility to obtain sintered material from alkaline basaltic tuffs is demonstrated. The parent rock was milled for 10–15 min, the resulting powder was pressed at 100 MPa and the obtained samples were heat-treated in the range of 1000–1140 °C. The sintering behaviour and the phase formation were studied by pycnometry, dilatometry, DTA, XRD and SEM.The final material was obtained by sintering at 1100 °C and is characterized by zero water absorption, 8–9 vol.% closed porosity and a structure similar to a glass-ceramic. Due to high crystallization trend of used composition, phase formation takes place during the sintering and cooling steps; this leads to a crystallinity of ~60% and formation of different crystal phases (pyroxene, anorthite, spinel and hematite).Despite the low-cost production cycle the obtained material is characterized by high mechanical properties: bending strength of 100 MPa and Young modulus of 90 GPa.  相似文献   

9.
The effect of excess MgO mole ratio on the sintering behavior of cordierite ceramic was studied using XRD and SEM. The green bodies were sintered at 1100–1300°C by solid‐state method. The excess MgO did not obviously reduce the crystallization temperature but increased the production of liquid and densification. This effect has to be activated by a specific temperature. The starting material had little influence on the crystallization phase at 1200°C or higher. As basic magnesium carbonate can also be used as a pore‐forming agent, the shrinkage and porosity approached maximum value at 3.4 mole ratio of MgO.  相似文献   

10.
Transparent alumina was fabricated from untreated commercial powder by high-pressure spark plasma sintering (HPSPS) at temperatures of 1000, 1050 and 1100 °C under pressures of 250-800 MPa. It was established that transparency strongly depends on the HPSPS parameters. At all temperatures, there was a certain point when increasing the pressure led to decreasing transparency. At 1100 °C, relatively high pressure led to excessive grain growth, as well as the formation of creep-induced porosity at the center of the samples. Hardness values decreased with pressure due to grain growth, correlated with the Hall-Petch relationship. The optimal combination of optical and mechanical properties (68% in-line transmittance at a wavelength of 640 nm and a hardness value of about 2300 HV2) was achieved after sintering at 1050 °C under 600 MPa.  相似文献   

11.
《Ceramics International》2020,46(17):26784-26789
Effect of sintering temperature on the physical and mechanical properties of synthesized B-type carbonated hydroxyapatite (CHA) over a range of temperature in CO2 atmosphere has been investigated. The B-type CHA in nano size was synthesized at room temperature by using a direct pouring wet chemical precipitation method. The synthesized CHA powders were subsequently consolidated by sintering treatment from 800 to 1100 °C. The sintered CHA samples were evaluated using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectrometry, X-ray fluorescence (XRF), carbon-hydrogen-nitrogen-sulfur-oxygen (CHNS/O) elemental analyzer, Field emission scanning electron microscopy (FESEM), and Vicker's indentation technique. The results obtained from XRD and FESEM indicated that the synthesized B-type CHA powders were nanometer in size. The crystallinity and crystallite size of the sintered CHA samples were increased due to increasing sintering temperature. The heat treatment between 800 °C and 1000 °C has resulted in coarsening and increased hardness of the sintered CHA samples. However, these properties began to deteriorate when sintering beyond 1100 °C due the formation of calcium oxide.  相似文献   

12.
Fracture toughness of La0.6Sr0.4Co0.2Fe0.8O3‐δ (LSCF) in both bulk and film forms after sintering at 900°C to 1200°C was measured using both single‐edge V‐notched beam (SEVNB) 3‐point bending and Berkovich indentation. FIB/SEM slice‐and‐view observation after indentation revealed the presence of Palmqvist radial crack systems after indentation of the bulk materials. Based on crack length measurements, the fracture toughness of bulk LSCF specimens was determined to be in the range 0.54–0.99 MPa·m1/2 (depending on sintering temperature), in good agreement with the SEVNB measurements (0.57–1.13 MPa·m1/2). The fracture toughness was approximately linearly dependent on porosity over the range studied. However, experiments on films showed that the generation of observable indentation‐induced cracks was very difficult for films sintered at temperatures below 1200°C. This was interpreted as being the result of the substrate having much higher modulus than these films. Cracks were only detectable in the films sintered at 1200°C and gave an apparent toughness of 0.17 MPa·m1/2 using the same analysis as for bulk specimens. This value is much smaller than that for bulk material with the same porosity. The residual thermal expansion mismatch stress measured using XRD was found to be responsible for such a low apparent toughness.  相似文献   

13.
Highly dense alumina–chrome bodies with low porosity are usually used as corrosion and thermal resistant refractories. Alumina–chrome refractory with molar ratio 1:1 was developed using chemical grade hydrated alumina and chromium (III) oxide by conventional sintering route. Batch materials were attrition milled, isostatically pressed and sintered in the temperature range from 1000 °C to 1700 °C with 2 h soaking at peak temperature. Phase development of the sintered materials with temperature was studied by X-ray diffraction. Sintering temperature, sintering condition and addition of sintering aid (TiO2) have immense effect on the densification of the alumina–chrome refractory. Highly dense alumina–chrome refractory with almost nil apparent porosity was developed at 1500 °C in reducing atmosphere. Flexural strength of the sintered materials at room temperature and at 1200 °C was also measured. 1 wt% TiO2 gives the optimum result with respect to densification and flexural strength.  相似文献   

14.
Dense BaTiO3 ceramics consisting of submicrometer grains were prepared using the spark plasma sintering (SPS) method. Hydrothermally prepared BaTiO3 (0.1 and 0.5 µm) was used as starting powders. The powders were densified to more than similar/congruent95% of the theoretical X-ray density by the SPS process. The average grain size of the SPS pellets was less than similar/congruent1 µm, even by sintering at 1000-1200°C, because of the short sintering period (5 min). Cubic-phase BaTiO3 coexisted with tetragonal BaTiO3 at room temperature in the SPS pellets, even when well-defined tetragonal-phase BaTiO3 powder was sintered at 1100° and 1200°C and annealed at 1000°C, signifying that the SPS process is effective for stabilizing metastable cubic phase. The measured permittivity was similar/congruent7000 at 1 kHz at room temperature for samples sintered at 1100°C and showed almost no dependence on frequency within similar/congruent100-106 Hz; the permittivity at 1 MHz was 95% of that at 1 kHz.  相似文献   

15.
In order to develop low cost ceramic membranes and effectively utilize abundantly and dumped waste agriculture, fabrication of green silica based ceramic hollow fibre membranes from waste rice husk was evaluated. Rice husk was converted into amorphous and crystalline silica based rice husk ash (ARHA and CRHA) by burning process at 600?°C and 1000?°C, respectively. The properties of silica based rice husk ashes were studied by transmission electron microscopy (TEM), x-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), BET analysis, thermogravimetry and differential thermal analysis (TG/DTA) and x-ray fluorescence (XRF). Effect of silica content and sintering temperature towards membrane fabrication were investigated and characterized in term of morphological properties, mechanical strength, surface roughness, pore size distribution, porosity and pure water flux (PWF). The ceramic hollow fibre membrane (CHFM) prepared at 37.5?wt% CRHA content and sintered at 1200?°C achieved a good mechanical strength (71.2?MPa) and excellent porosity (50.2%). As a result, high PWF with value ~ 300?L/m2 h and stable at 20?min was obtained. Due to the excellent pure water flux, the prepared ceramic membrane from waste rice husk hold promise for water treatment application.  相似文献   

16.
Diatomite, a natural silicate-based sedimentary rock, was densified by cold sintering at room temperature and 150°C under various pressures (100, 200, and 300 MPa) and using different NaOH water solutions (0–3 M). The relative density of cold sintered diatomite can be as high as 90%, a condition that can be achieved by conventional firing only at 1200–1300°C. The cold sintered materials maintain the same mineralogical composition of the starting powder (quartz, glass, and illite) and are constituted by well-deformed and flattened grains oriented orthogonally to the applied pressure. Conversely, an evident phase evolution takes place upon conventional firing with the formation of cristobalite and mullite. The bending strength of cold sintered artifacts can exceed 40 MPa and increases to ≈80 MPa after post-annealing at 800°C, such mechanical strength is much larger than that of conventionally pressed samples sintered at 800°C, which is only ≈1 MPa.  相似文献   

17.
《Ceramics International》2020,46(2):2116-2121
Zn0.95V0.05O ceramics, elaborated from milled ZnO and V2O5 nanopowders, were sintered at 900, 1000 and 1100 °C for 1, 2, 4, 6, 10 and 14 h. The growth kinetics was studied identifying the grain growth exponent, the activation energy and the pre-exponential factor. The high V2O5 concentration allowed a rapid grain growth at 900 °C only at the very first stages (t < 1 h). Meanwhile, at temperatures of 1000 and 1100 °C, the grain growth was extremely fast with a growth exponent of 0.72. The magnetic properties of the samples indicate that ferromagnetism exist in all samples in different magnitudes depending on the sintering conditions. In particular, the maximum magnetization was obtained on the sample sintered at 1100 °C for 14 h, despite the reduction of V concentration. Additionally, secondary paramagnetic phases were detected in the samples sintered at lower temperatures and shorter sintering times.  相似文献   

18.
Bimodal porous ceramics with high strength have been fabricated by conventional powder metallurgy utilizing artificially cultured diatom frustules (DFs). The effect of sintering temperature on thermal behaviors, phase transition, and pore structures features of DFs-based porous ceramics is investigated between 800 and 1200°C. The phase evolution of DFs powders is investigated with thermal analysis (DIL and DSC-TG). Phase transition behaviors analyzed with XRD, Raman, and FT-IR spectra confirm the transformation of quartz into cristobalite phases occurs under 1050°C. Sintering under 950°C could bind DFs powders tightly into high strength porous ceramics while maintain the multilayer pore structures simultaneously, having porosity of 56.4%, compressive strength of 15.0 MPa and surface area of 50.9 m2/g, respectively. Slit-shaped microstructures and mesopores (2-50 nm) are observed in DFs-based porous ceramics sintered under 1050°C. Collapse and blockage of pore structures as well as partial fusion of DFs particles happened at the temperature of 1100°C, indicating the presence of diminished multilayers and particle agglomeration.  相似文献   

19.
Porcelain powder was consolidated using spark plasma sintering (SPS) at a constant heating rate of 100°C?min?1 to peak temperatures ranging from 1000 to 1200°C and was observed to sinter at relatively low temperature ~920°C under the SPS conditions while conventional sintering requires ~1050°C. SPS produced densification rates about 10 times greater than conventional sintering. The dwelling step at the optimal peak temperature was negligible due to rapid flow of the molten glass assisted by applied pressure. SPSed samples exhibited denser microstructures, resulting in improved physico-mechanical properties compared with conventionally sintered samples such as apparent bulk density improved from 2.38 to 2.48?g?cm?3, Vickers hardness improved from 3–5 to 6–7?GPa, and fracture toughness improved from 2–3 to 4–6?MPa?m1/2.  相似文献   

20.
Yttrium aluminum garnet (YAG) fibers were prepared by a sol-gel method, and then sintered in air or nitrogen atmosphere, respectively. The effects of sintering atmosphere on the densification process and microstructure of YAG fibers were investigated. No obvious difference can be found in the fibers sintered below 800 °C. At 1100 °C, the grain size of YAG fibers sintered in nitrogen is much smaller than in air. This difference is much clearer at the higher temperature of 1200 °C. The fine grains are explained by the existence of residual carbon in YAG fibers, which can be trapped at the grain boundaries to hinder the movement of grain boundary. Meanwhile, the densification degree of fibers sintered in nitrogen is higher than in air at 1200 °C, due to the smaller grain size and higher oxygen vacancy concentration generated in the nitrogen atmosphere, which leads to a higher fiber densification rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号